Optimal Infeed Control for
Accelerated Spark-0ut in Plunge
Grinding

An optimal infeed control policy is proposed to minimize the cycle time in cylin-
drical plunge grinding. As compared with conventional infeed control consisting of
roughing followed by spark-out, the proposed infeed control policy accelerates the
spark-out by reducing the time required to recover the accumulated elastic
deflection in the system and to reduce the infeed velocity to its final required value.
This optimal infeed control policy is particularly advantageous for grinding systems
having a long characteristic time constant. A practial method is described for
implementing the optimal infeed control policy based upon direct measurement of
the radial allowance remaining on the workpiece.
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Introduction

The objective in external and internal cylindrical plunge
grinding operations is to produce parts of revolution
satisfying specified roundness, diametral, and surface finish
requirements. By its very nature, however, the removal
process in cylindrical grinding generates a spiral shape rather
than a round shape as can be seen in Fig. 1. If the wheel is
instantaneously retracted from the workpiece, a step is left
whose height is equal to the infeed per revolutiona = v/n,, at
the point where the wheel disengaged from the workpiece. A
more nearly round part is obtained with a smaller infeed per
revolution ¢, and .a:nce a smaller radial infeec velocity v for a
given workspeed, at the end of the grinding cycle. A smaller
radial infeed velocity will also give a smoother surface finish.
In this sense, the need to satisfy roundness and surface finish
requirements can be considered as equivalent to specifying an
upper limit on the radial infeed velocity at the end of the
grinding cycle.

Cylindrical plunge grinding infeed control cycles generally
consist of three or more stages. The commonest type of cycle
illustrated in Fig. 2 consists of a roughing stage with a con-
trolled infeed velocity u,, a spark-out stage with u, = 0, and
a rapid retraction stage. Due mainly to elastic deflection of
the grinding system, the actual accumulated infeed follows the
curve g(¢) and lags behind the controlled infeed. (Grinding
wheel wear also contributes to the lag, but this effect is
neglected for now.) The elastic deflection is accumulated
during the transient at the beginning of the roughing stage
(spark-in), and this deflection is recovered in the spark-out
stage during which the part is rounded up and the surface
roughness decreases as the actual radial infeed velocity
decreases [1-3]. While almost all the actual material removal
occurs during the roughing stage, the spark-out stage may

Fig.1 Illustretion of extamal cylindrical plung= grinding

ftime ,

Fig.2 lllustration of conventional grinding cycle

constitute a significant portion of the total cycle time. Ac--
cordingly, the time for spark-out can significantly affect the
production rate.

In the present paper, a pracncal approach is developed for
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accelerate the spark-out by reducing the infeed velocity to its
final limiting value such that the total cycle time is minimized.
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Fig.3 Optimal control infeed velocity and actual velocity

A similar optimal control problem was previously analyzed
[4], but the solution and its practical utilization differ from
what is presented here. )

Model

As a basis for developing the optimal infeed control policy,
it is first necessary to derive the differential equations relating
the control infeed velocity u(¢) to the actual infeed velocity
v(t) of the grinding system. Neglecting wheel wear, the
difference between the control and actual infeed velocities can
be attributed to the changing radial elastic deflection 6, in the
grinding system:

d(s,)
dt

Let us assume that the normal grinding force is propor-
tional to the infeed velocity:

F,=Cbu(t) )

u(t)—v(t)=

1)

and that the elastic deflection is, in turn, proportional to the
normal force F,:

F, =k, €))

where b is the grinding width, C is a constant, and X is the
over:il grinding system stiffness. Combining equations (1-3)
leads to

: 1
v= —T[u(t)—v(x)] 4
where 71s a time constant defined as:
Cb
— 5
= (%)

The rate at which the workpiece radius actually decreases is
also equal to the actual infeed velocity:

g=v(1) 6)

Equations (4) and (6) comprise a set of two differential
equations which describe the grinding process together with
the initial conditions :

v(0)=0 (7a)
q(0)=0 (7b)
and the final conditions
u(t,)'-;:vf (8a)
q(ly) =4r (8b)

where v, is the final infeed velocity (v, = 0) based upon surface
finish and roundness requirements, and Ar is the total amount
of material to be removed from the workpiece radius.
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Fig.4 Optimal grinding cycle with additional spark-out

Conventional Control Policy

Consider first the conventional grinding cycle shown in Fig.
2. In order to minimize the grinding cycle time, the infeed
velocity control in the first stage should be the maximum
allowable one u; = u,, which will usually be limited by
surface integrity or wheel breakdown. Solving equations (4)
and (6) for the first stage gives:

v(t)=(1-E)u, ®)
g(ty=(+7E—T1)u, (10)

where
E=exp(—t/7) an

In a typical grinding 7, > > 7, so that E=0 at the end of the
first stage and

v(t))=u, (12)

(13)

The quantity u,7 is the steady-state lag of the actual infeed
behind the control infeed.

Equations (12) and (13) provide the initial condition for the
spark-out stage with u(r) = 0. Solving equations (4) and (6)
at the final time 7, gives:

q(ty)=uty —u,7

v(ty) =Esu, 14)

15)

where E, is the value of E at r=1;, and /; is the spark-out
duration (1, = t; — ;). Since &r = u,, equation (15) can .
also be written:

Q(tf)=Q(tl)+(1 —-Ey) mxzrlux-EZTux

(1) =2ar—e (16)

This result contradicts the requirement of equation (8(d)),
since there is always an oversize error ¢ = E;7u, which can
only be practically eliminated if £, > > 7.

Optimal Control Policy

The problem of specifying an opitmal control infeed policy
can be stated as the following optimization problem:
Transfer the system

MR I R i
) = + u(t) (17)
v 0 -1/7 v(r) 1/

with a control variable constraint u,, < u(#) < u, from its
initial condition given by equation (7) to the final condition
given by equation (8) in minimum time. Equation (17)
corresponds to equations (4) and (6).

This problem belongs to a class of so-called ‘‘time optimal
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problems’” which can be solved on the basis of Pontryagin’s
Maximum Principle. The general solution has the following
features [5]: '

1 If the system equations are linear with constant coef-

ficients (the case of equation (17)) and the admissible control .

is limited between given constants um =< u(t) = u,), the
solution is bang-bang, which means that the control switches
from u, to u,,, or vice-versa. ,

2 If all eigenvalues of the state matrix (the first matrix on
the right-hand side of equation (17)) are real and the control
u(t) is bang-bang, then there can be at most (n — 1) switches
of u (1), where n is the order of the state matrix.

Since the state matrix in equation (17) is second order, there

. should be at most one switch of u(¢) at time ¢,. Therefore, the

optimal control interval is divided into two periods during
which the extremal controls are provided:

u(t)y=u, for O=r=y,

u(t)=u, for 1 ==y,

This control policy is indicated in Fig. 3. The optimal
switching time 7, and cycle time t; can be found by solving
equation (17) forward in time within the two periods and
comparing the final state with the required one in equation
(8). At the end of the first period, the state (v, @) is given by
equations (12) and (13). At this point, the minimum infeed
control velocity u,, is applied, which is negative. The final
state at time 7, is:

v(ty) =E; 1-E ) u,— (Ey; = Du,, (18a)
q(t)=q(t))+ (1 =Ey)) (1 = E\)u, + (13+ 7E, — 7)u,, (18b)

where E, and E, are the values of E at 7, and 1,, respectively.
By substituting equations (8) and (13) into equation (18) and

~assuming that £, = 0 as before, the two time periods are
obtained:
Ar
ty ==+ (v,—u, Inf) 19)
uX X
t,=7Ing (20)
where
B= HxTUm @n
vf-u,,,

The optimal grinding cycle time 1/ obtained by adding 7, and

t, becomes
Ar
== +T[i +<1— u—"’) lnB]
uX

(22)

Practical Considerations

It is apparent that with the infeed control policy in Fig. 3,
the final infeed velocity requirement of v(t;) = v, isreached
at only one point on the part periphery. The foregoing
analysis does not explicitly take account of the need to satisfy
the surface quality requirement around the whole cir-
cumference. In the ideal case of v, = 0, this condition is
readily obtained by adding a third stage with ¥ = 0 for a
period of at least T = 1/n,,, corresponding to one revolution
of the workpiece, followed by a rapid retraction. The whole
grinding cycle is illustrated in Fig. 4.

In order to implement this control policy, it is necessary to
know at which point to switch from the first to the second
stage. As a practical matter, the time 7, cannot be directly
measured accurately enough due to such factors as initial
part-to-part variation. A more feasible approach is to switch
when the meaured remaining allowance to be removed after
the first stage reaches Ar,. By combining equations (13) and
(19):
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Fig. 5 Cross-plot of At*/7 versus arylu, 7 for various values of C4 and
C2

Ary=ar—q(t))=1(u,—v,+u,, Inp) (23)

In this case, the system performance may become limited by
how accurately Ar, can be specified or measured, which leads
to a trade-off between the grinding allowance Ar, and the
grinding time. From equation (22) the optimal grinding time
(excluding T in Fig. 4) can be written:

(24)

where 7y, corresponding to the first term in equation (22), is
the time to remove all the material at the maximum infeed
velocity, and Ar®, corresponding to the second term, is the
additional optimal time required to recover elastic deflection
and decelerate the infeed velocity to its final value. The time
Ar® can be written in dimensionless form as:

Iy =1,+Ar°

= 14+C, >
where
C =L (26)
uX
and
Cym = @n
uX

Likewise, the allowance in equation (23) can also be written
in dimensionless form as a fraction of the steady-state lag in
the first stage: g

Aar, ( 1+GC, )
=] _C l i 28
u,T -G 2in C+C, e

The dimensionless parameters C, and C, now indicate the
final infeed velocity and control infeed velocity during the
second stage, respectively. (Note that C, is defined as positive
for a negative control velocity as shown in Figs. 3 and 4).

The tradeoff between As*/7and Ar,/u,7is shown in Fig. §
for various values of C, and C,. The curve for C, =
corresponds to the conventional policy in Fig. 2 as a special
case. The reduction in cycle time which is possible by adopting
the optimal policy in Fig. 3 can be readily seen in Fig. 5. For
example, in order to achieve a final condition C, = 0.05, the
conventional control policy (C, = 0) would require Ar*/7 = 3
as compared with Ar*/7 = 1.4 for C, = 1. The optimal policy
becomes increasingly advantageous as the final requirement
on C, becomes more stringent. Furthermore the final
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Normal force, Fp

Infeed velocity, v
Figls Normal force versus infeed velocity

requirement has relatively little effect on the grinding time.
For example, with C, = 1 the final condition C, = 0.1
requires Ar°/7 = 1.3, whereas C, = 0 is reached with Ar*/7
= 1.4. It is generally worthwhile to aim for complete spark-
out (C, = 0) with this control policy.

It is apparent from Fig. 5 that the grinding time can be
reduced by making C, bigger (faster retraction). This, in turn,
will require a smaller allowance Ar, at the switching point.
The magnitude of C, is likely to be constrained by a lower
practical limit on Ar, due to such factors as the accuracy and
sensitivity of the in-process gaging system, the tolerance
requirements, and the response time of the machine tool and
infeed control system. At the other extreme, the allowance
must be less than the steady-state deflection (Ar,/u,r < 1).
Once the allowance Ar, is specified, the required value of C,
can be obtained from Fig. 5 or equation (28). For example,
with &r,/u, 7 = 0.3 as the limiting case, it can be seen in Fig. 5
that u,, should be chosen such that C, = 1 for a final
requirement of C, = 0. Solving directly for C, from equation
(28) is very tedious, but it can be shown for 0.2 < Ar,/u, 7 <
0.8 and C, = 0 that C, can be approximated with less than §
percent error by the relationship:

Arﬁ
C, =exp (1.65—5.15 ‘)
u,

An example with computed values of 7, u,7, Ay,, Ar°, and
T'is given in Appendix A. Time constants on the order of r =
1 s appear to be more or less typical for external cylindrical
grinding of solid components. With flexible components, the
time constants would be bigger due to decreased stiffness of
the grindng system. Big time constants are also typical of
internal grinding operations mainly due to low system stiff-
ness. With bigger time constants, longer spark-out times are
needed with the conventional control policy, and it becomes
relatively more advantageous to use the optimal infeed
control policy to accelerate the spark-out.

In order to implement this optimal infeed control policy, it
is necessary to specify the time constant 7 of the grinding
system. In general, 7 cannot be directly obtained from
equation (5) because the parameters C and k are not known.
One practical solution is to make an on-line estimate of r by
measuring the steady-state lag at # > > rin the first stage. The
steady-state lag can be obtained as the difference between the
total accumulated radial infeed u,r and the corresponding
decrease in part radius as determined by in-process gaging of
the part. Since the steady state lag is equal to u, 7, dividing by
u, yields the time constant 7. This method can be expected to
result in a ‘‘measured’’ time constant which is longer than the
effective one. This can be seen by noting that although the
grinding model assumes a proportional relationship between
the normal grinding force and the infeed velocity, the ex-
perimental measurements typically show the behavior

(29)
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Fig.7 Conventional grinding cycle with additional finishing stage

illustrated in Fig. 6 [6]. The apparent proportionality factor
Cb in Fig. 6 will decrease as the actual infeed velocity in-
creases. For typical production grinding conditions, this
overestimate of the time constant should lead to a slight
overestimate of the allowance Ar, in equation (24), which
might be compensated for by extending the time 7 before
rapid retraction at the end of the cycle in Fig. 4.

Up to now, the effect of wheel wear has been neglected. A
modified analysis taking wear into account is presented in
Appendix B. With external grinding, where the wheel
diameter is usually much greater than the workpiece diameter,
the effect of wheel wear will be very small for grinding ratios
obtained in most production operations. For a relatively
smaller wheel diameter, and especially in the case of internal
grinding, wheel wear will have an increasingly greater effect
on the optimal control policy.

Aside from the conventional control policy in Fig. 2,
another type of control policy often found in practice includes
an additional finishing stage between the roughing and spark-
out stages such as illustrated in Fig. 7. From the optimization
analysis, it is apparent that the addition of this stage will
always lengthern the grinding cycle. However, this additional
stage may be necessary in order to remove subsurface damage
from rough grinding, such as an overtempered laver of
hardened steel. This same cycle can also be improved by
adopting the accelerated spark-out control policy shown in
Fig. 8, analogous to the one in Fig. 4, with the infeed velocity
control u, now limited so as to avoid subsurface damage. The
best point at which to switch from u, to us in Fig. 7 can.be
found by following the same procedure as described above for
the cyclein Fig. 4. :

The optimal infeed control policy reduces the grinding cycle
time by accelerating the spark-out. It has been proposed [7]
that this accelerated spark-out policy can be advantageously
incorporated into the Adaptive Control Optimization (ACO)
grinding system which has been recently developed [8]. The
ACO grinding system is based upon a strategy which op-
timizes the grinding and dressing parameters for maximum
removal rate subject to constraints on workpiece burn and
surface finish. In the prototype ACO system, a conventional
grinding cycle was used like the one shown in Fig. 2 with a
fixed spark-out time duration, and the optimization objective
was essentially equivalent to maximizing u,, thereby
minimizing the roughing time. With the addition of the op-
timal infeed control policy, the spark-out time can also be"
reduced. Furthermore, the part can now be fully sparked out,
which may have been impractical with the conventional cycle
due to the magnitude of the time constant 7. More complete
spark-out should improve the final surface finish. This, in
effect, means that the surface finish constraint will be relaxed,
and implementation of the ACO optimization strategy in this
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Fig. & Grizding cycle with finiehing stage medified for sccelerated
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case will kead to coarser dressing and a faster allowable infeed
velogity in the roughing stage with a further reduction in cycle
time, Coarser dressing will also reduce the proportionality
factor C in equation (2), decreasing the time constant s and
reducing :till fusther the time for accelerated spark-out. A
more advanced ACO grinding system is being developed
which corobines the optimal infeed contrgl policy for ac-
celerated ipark-out together with the grinding and dressing
optimization strategy of the previous ACO system.

References

1 Okamwa, K., and Nakajima, T., *Size Generation Process in Griading, "
Prec. Inter ational Conferance on Production Enginevring, Parnt 2. Japan
Society of Piecision Enginecring, Toltyo, 1974, pp. 56-63. i

2 Okamu:a, X., Nakajima, ¥., and Uno, Y., *Analyticai Description of
Acrumulatic o Phenomenon ia Grinding,’” Annaly of the C'IRP Vol. 27, 1978,
- 243-247.

3 Lindsay, R. P.. “kam Behavior in Peecision Gmdmg." SME Paper
Neo. MR72-2)5, 1972

4 Levin, /1. 3., 88d Mashniztov, V. M., “Opiimization of a Nunuanndms
Cycle,” Max hines & Tooling, Vd.“.No 12, 3977, pp. 36~39. :

$ Leitmas:, G., As Introducsion to Optimal Conteol, McGtaw-Hdl. New
York, 1968, Chaptaz

6 Lindsay. R. P., and Hahn, R. S., **On the Basic .Re!anmmw between
Grinding Pa mmeters,”” Annsts of the CIRP, Val. 19, 1971, pp. 657-666.

7 Malkin S., *'CGrinding Cycle Optimization,’”” Anmaals of the CIR P, Vol. 30,
1981, pp. 223=226.

8 Amitsy. G.. Malkin, $., and Koren, Y., “*Adaptive Control Optimization
of Grindlag ** ASME JOuaNAL or Euoolamm FoR INpusTRY, Vol. 103, 1981,
pp. 103=308

APPENDEX A

Consider a cylindrical exiernal plunge grinding operation

with the following parameters:
normal force (max) F,=600N
wheel » elocity v, =45m/s
work v tlocity v, =45 m/min
whese} ¢(iameter d, =750 mm

741 Vol 108, FEBRUARY 1964

work diametes d.=80mm
grinding width b=30mm
system stiffness k=10 N/pm

infeed velocity (max) u, =54 ym/s

The normal force given is the maximum valueat r > > 7in
the first stage when the actual infeed velocity reaches the
controlled maximum value of u,. The time constant is
caleutated from equations (5) and (2) as

Cbk F,
7= ok =].1s
and the steady-state lag in the figst stage 8t/ > > risw,7 =
60pm. For €, = 0and C; = 1, the required allowance {rom
Fig. S is Ars/u,7 = 0.3 or Ar; = 18um, for which Ar®/7 =
1.4 or &2° = 1.5 5. The minimum additional time 7 in Fig. 4
for one revolution of the workpiece is 0.34 s,

APPENDIX B

The grinding model can be readily modified to include the
effect of wheel wear for a given grinding ratio G. The grinding
ratio is defined as the volumetric ratio of metal removal rate
of wheel wear rage:

o xdbu(n) _ duult)

zd;bw(¢) d,w(e)

where w{r) is the radial wear rate of the wheel. Taking wheel

wear into account, the comeinuity condmon analogous to
equation (1) becomes:

(B-1)

d(ée)
a

Combining equations {B-1) and (B-2) with equations (2) and
(3) leads to

ult) =v(e) =w(p) = (8-2)

a=;‘7{u' ) ~v(0)] (8-3)

where

and

u(e)

* a6
Equations (B-3) and (6) are now the two differential equations
which describe the grinding process in place of equations (4)

and (6) Therefore, the s2ame analys:s still applm provided
that ris replaced by 7" and u(¢) is replaced by u”° (¢).
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