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ated with the eigenvalues of M(0) other than x’(0). The following 
lemma gives the derivatives. 

Lemma I :  The m first derivatives X j ( O ) ( j  = 1, * . . , m) of a 
multiplicity m eigenvalue x’(0) are the m eigenvalues of the matrix 

(Y’)*M’(O) Y ‘  (7) 
where M’(t) denotes the derivative of M ( t )  with respect to t.  In 
addition, if t = 0 is a regular point, then the m second derivatives 
2i(O)(j = 1,. . . , m) are the eigenvalues of 

( Y l ) * (  M”(0) + 2M‘(0)Zi(Xj(O)I - A’,)-’  

(Z’)*M’(O)*) Y ’ .  ( 8 )  

Lemma 2: Let ~ ( t )  = eD‘A(0)e-D‘, let m M ( t )  

- - n x n  

and let Y ( t )  be a matrix whose columns span the eigenspace of 
M(0) corresponding to x’,(O). Then 

(Y‘)*M”(O)Y’ = (2Y i )*D(Rj (0 ) I  - M ( 0 ) ) D Y ’ .  

Proof: This is a special case of a result proven in [8]. 

A( t )  + A*( t )  
2 

, let D be an invertible diagonal matrix E 

(9) 

Proof: The derivatives A‘(0) and A”(0) are give as follows: 

A’(0) = D A ( 0 )  - A(O)D 

A”(0) = D 2 A ( 0 )  - 2DA(O)D + A ( 0 ) D 2 .  

Hence 

( Y i ) * W ( O )  Y ’  

= ( Y i ) * ( D 2 M ( 0 )  - 2 D M ( 0 ) D + M ( 0 ) D 2 ) Y i  

= (2Y‘)*D(Xj(0)Z - M ( 0 ) ) D Y ’  

where the latter equality follows via the identity 

M ( 0 )  Y‘  = Xj(0) Y ’ .  

Equation (9) follows. Q.E.D. 
The main result can now be proved. 
Theorem I :  The functional 

(10) 1 

1 

eDAe-D + (eDAe-D)*  
L a x (  2 

Lax i eD‘Ae-D‘ 2 

is convex in D.  

it suffices to prove that for any D E 9? n x n ,  the function 
Proof: To establish the convexity of the functional (10) of D ,  

+ (eD‘Ae-Dl)* 

is convex in t. Using Lemma 2 ,  it can be easily checked that (8) is 
positive semidefinite for all 

Hence, if 0 E T, then X”(0) 2 0. But t = 0 is not a distinguished 
point, so X”’(t) 2 0 for all t E T .  It follows that X ( t )  is convex on 
T,. Since U,Tj  = and since the maximum of several convex 
functions is convex it follows that Lax ( t )  is convex. Q.E.D. 

111. CONCLUSIONS 

The principal conclusion of the note is the proof that the mini- 

mization 

is convex in D .  In theory, this implies that a steepest descent 
optimization method for finding the minimizing D should converge 
globally, through practical considerations such as step size and 
tolerances for detection of sharp gradient changes could drastically 
affect convergence rates. Nevertheless, the authors have developed a 
robust computer algorithm [ 121 which reliably overcomes these 
difficulties using a Davidon-Fletcher-Powell-type modification of 
the generalized-gradient steepest-descent approach. Robustness anal- 
ysis was performed on lateral directional flight control system 
designs with large uncertainty [12]. For a system with one-sided 
perturbations, the one-sided MSM provides a better robustness 
measure than using the traditional two-sided MSM. 
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cal-varying parameters is presented. An algorithm for parameter identi- 
fication of such systems, based on the known internal model principle 
and on the recursive least squares parameter estimation, is proposed. 
The system parameters are assumed to satisfy a linear difference equa- 
tion with constant coefficients. A persistent excitation condition of the 
measurement vector automatically guarantees exponential stability and 
therefore there is no need to use any resetting procedures. This condi- 
tion is similar in form to the observability gramian property of a linear 
time-varying system. Simulation and practical application of the algo- 
rithm on an experimental robot system show good tracking even when 
the parameters vary drastically and in an abrupt manner. 

INTRODUCTION 

The applicability of most of the recursive algorithms for the 
identification of system parameters is limited to the estimation of 
constant or slowly time-varying parameters. 

Several advanced recursive algorithms for identification of linear 
fast time-varying (LFTV) systems have recently been published 
[1]-[3]. Basically, the design strategy of these methods is to com- 
bine recursive algorithms of time-invariant systems with an approxi- 
mation of the variation of the parameters as polynomials in time. 

The idea of approximating time-varying parameters with time 
polynomials is not new and was vastly applied to batch identification 
algorithms. Various kinds of polynomials have been employed such 
as the Chebyshev polynomial [4], the Legendre polynomial [5], the 
shifted Laguerre polynomial [6], and the generalized orthogonal 
polynomial [7]. Such applications suffer from lack of convergence 
problems, since the polynomials are made to fit a fixed set of 
measurements. The identification must be carried out, however, 
off-line on previously obtained data. Batch procedures could not, 
therefore, be used for the purpose of real-time tracking and predic- 
tions of time-varying parameters, neither could they be incorporated 
in a real-time adaptive control scheme. The need for a recursive 
algorithm that could be used on-line is obvious. 

Xiania and Evans [l] and Zheng [2] proposed recursive algo- 
rithms for the identification of time-varying parameters. These 
algorithms did not guarantee boundedness of estimated parameter 
vectors even when the persistent excitation (PE) condition was 
satisfied. In order to get such boundedness, they had to use resetting 
procedures. In an attempt to overcome the boundedness problem, 
Hersh [3] used a bounded semiperiodical time functions model. He 
assumed that the period of those functions was known. This assump- 
tion is nontrivial, since such specific and detailed information on the 
system parameters is not always available. 

We propose a novel methodology by which time-varying parame- 
ters can be identified in real time without the need for resetting 
procedures or special time function models. A new algorithm named 
internal model least squares (IMLS), which is based on the internal 
model principle [ 8 ] ,  was developed. This principle was originally 
proposed as a solution to the servomechanism problem. It states that 
a servosystem can track command input signals and suppress input 
disturbances if its controller includes an internal model which 
represents the nature of the dynamics of those inputs. 

Basically, our proposed identification scheme is based on the 
observer theory, specifically on the fact that an observer for a 
dynamical system should incorporate the dynamics of the observed 
system. The problem, however, is how to combine the parameters' 
dynamics with the system equation. We employed the internal 
model principle. Accordingly, discrete transfer functions or ade- 
quate difference equations, which duplicate the parameters' dynam- 
ics, should be merged with the system equations. Thus, our tech- 
nique differs from the previously mentioned works by the fact that it 
does not employ time functions to describe the variation of the 
parameters. 

It is shown that an identification algorithm can better track fast 
time-varying parameters if it includes a suitable internal model for 

the time variations of these parameters. The model for the dynami- 
cal variation of the parameters may accept any function that satisfies 
a linear difference equation of the form D(q-')O(t) = 0, where 
O(t)  is the modeled parameter, D is a linear difference equation of 
some order n, and q - '  is a unit time delay. 

A priori information of the variation of the parameters, such as 
natural frequency, exponential time constant, etc., may be easily 
incorporated into the model, and enhance the identification process. 
A proper formulation of this model, combined with the Kalman 
filter theory, yields a theory of LFTV parameter identification that is 
similar in form to the theory for the state estimation of a linear 
time-varying system. As a consequence, the PE condition which is 
essential to the quality of the identification process is equivalent to 
the observability gramian property [9] of a linear time-varying 
system. 

The PE condition automatically ensures global stability of the 
IMLS algorithm and exponential convergence to zero of the identi- 
fication error [lo], [ll]. Furthermore, there is no need to use any 
stabilizers or parameter resetting techniques. The convergence proof 
of the IMLS algorithm is based on the assumption that the dynamics 
of the parameters is known. However, the performance of the IMLS 
algorithm is demonstrated by simulation and by application to an 
industrial robot, where successful identification of the parameters 
was also obtained for an approximate dynamical model of the 
parameters. 

PROBLEM FORMULATION 

We assume that the system to be identified is SISO, stable, and 
can be described by a time-varying deterministic A N A  ( D A N A )  
model of a known order. Following standard notation we write 

y ( t )  = + ~ ( t  - i)e(t - 1) (1) 
where t is an integer that denotes the time steps, and 

+'(t - 1) 

= [ y ( t  - l ) ; . . ,  y ( t  - n), u ( t  - l ) ; . . ,  u ( t  - m)] (2) 

e T ( t  - 1) 

= [a&- l ) , . . * , a n ( t -  l ) , O , ( t -  l ) ; * * , P , ( t -  l)]  (3) 

y ( t )  and u ( t )  are the system output and input, respectively. 

4'( t )  E is the measurement vector 

and 
e T ( t )  E ~ l . ( n + m )  

is the vector of the time-varying system parameters. 

to satisfy a linear difference equation with constant coefficients 
The general variation with time of the parameters B( t) is assumed 

D ( q - I ) e ( t )  = o (4) 
where q- ' denotes a unit time delay. The matrix D( q- I )  is of the 
form 

D ( q - ' )  = diag [ w , ( q - ' ) , * . * ,  w,,+,,,(q-')] ( 5 )  

each of the w.( q- I) are polynomials of the order L 
L 

W , ( q - ' )  = 1 + di,jq-' i = l ; . . ,  n + m. (6 )  

The terms di,  are constants to be selected according to the 
available a priori information, or as an approximation thereof. In 
addition, in order to prevent singularity problems, the last terms 
must be nonzero 

j =  I 

di ,L  f 0. (7) 
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The information in (4) may be combined with the DARMA model 
of ( l ) ,  using a state-space formulation. Hence, a new measurement . ,  I 

vector, @ ( t ) ,  an auxiliary matrix C, and a new parameter 
8(t) are defined as follows: 

V ( t )  = [ d T ( t ) ,  O,O; ,o] @ E z l , L ( n + m )  

c 3 [ I ,  o , o , .  . . , 01 C E  @ n + m ) ,  L ( n + m )  

and 

eT(t) = [ e T ( t ) , e T ( t  - i ) , . . . , e T ( t  - L + I ) ]  
e E R I .  L ( n + m )  

It is obvious from the above definitions that the system model (1) 
can be rewritten as 

y ( t )  = ~ ( t  - i)e(t - 1) (11 )  
and that the parameter vector 8 ( t )  is related to the previous 
8(t - 1 )  by a constant matrix A such that 

8( t )  = A 8 ( t  - 1 )  (12) 
where A is the internal model matrix, defined as 
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where A E ~ ( n + m ) L , ( n + m ) L  and 
of the matrix A are 

R n + m .  n + m  . The elements Di 

Di = diag [ di, , , di ,  n + m , ]  . (14) 
The identification algorithm must be properly synthesized. In 

cases where the interna: model describes the dynamical variations of 
the parameters perfectly, it is sufficient to estimate only the initial 
parameter vector 8 ( t , ) ,  where t ,  is the initial time. In cases where 
the internal model is just an approximation of the real dynamical 
variation of 8( f), the problem becomes to estimate recursively B( t)  
with minimal identification error. 

THE IMLS ALGOFUTHM 

The problem of parameter identification, as described by ( l l ) ,  
(12) has a similar form to the problem of the state vector estimation 
of a linear time-varying system [12]. The vector 8 ( t )  in (12) stands 
for the state vector A in the system matrix. Similarly, ( 1  1) may be 
viewed as an output equation, where y( t )  is the output variable and 
@ ( t )  is the output system matrix. The observer theory of D. 
Luenberger [12] can now be used to create the following equation 
for observing the “state vector” 8(t):  

e(t) = ~ e ( t  - 1 )  + ~ ( t  - l ) e ( t )  

e(t)  = y ( t )  - @ T ( r  - ije(t - I )  

(15) 

(16) 

where the error e( t )  is 

and K ( t )  is the observer gain, selected such that the process, z ( t ) ,  
given by 

z ( t )  = ( A  - K ( t  - l)@T(t - l))Z(t - 1 ) ;  
z ( t )  E 2 1 . L ( n + m ) .  , ~ ( 0 )  = z0 (17) 

is stable. Such an observer may estimate the state vector 8 ( t )  if the 
system has the observability gramian property. Following the devel- 
opment of Meditch [ 131, this property can be easily shown to be 

s- I 

CA-r(’+l)+(t - j ) @ T ( t - j ) A - ( ’ + ’ ) ~ a , I > O  (18) 
j = O  

where s is a positive scalar and U ,  is a positive constant. 

A stabilizing gain vector K ( t )  is proposed in the present IMLS 
algorithm as 

K (  t )  = AP(  t - 2)@( t - l )y (  t - 1) 

where 

~ ( t -  i ) = ~ [ ~ ( t - 2 ) - y ( r - 1 ) ~ ( t - 2 ) @ ( t - l )  

- V ( t  - 1 ) P ( t  - 2 ) ] A T +  CI, 

Y ( t  - 1 )  = ( 1  + V ( t  - 1 ) P ( t  - 2)@(t - I ) ) - ’  

c is an arbitrary positive constant and y is defined below 

P ( 0 )  = k , I  

where k ,  is a positive scalar, and 

e(0)  = e, 
is the best a priori knowledge of the vector e(0). 

The gain vector K(  t)  is similar in form to the Kalman filter gain 
vector [14]. The term cZ in (20) takes the place of the covariance 
system noise matrix Q of the Kalman filter theory. The inclusion of 
the term CZ in the equation guarantees that the covariance matrix, 
P, does not shrink to zero. 

It was shown in [ 111,  that c is related to the lower bound of the 
covariance matrix P. The constant c in (20) is arbitrary but still 
care must be exercised in its selection. If c is selected too low then 
the gain vector K ( t )  is also low and the tracking ability is limited. 
If, on the other hand, c is selected too high then the algorithm 
becomes sensitive to noise and to numerical errors due to the high 
gain. Thus, a trial and error procedure is indicated for the best 
selection. 

The main properties of the algorithm are summarized in the 
following theorem. 

Theorem: If the following PE condition holds: 
s- I 
1 ~ - ~ ( j + ’ ) @ ( t  - j ) aT(r  - j ) ~ - ( i + ’ ) 2 a , z > o  (24) 

j = O  

where s is a positive scalar and a, is a positive constant (note that 
similar conditions were given by Zheng [2] and by Hersh [3]), then 

1) the covariance matrix P( t)  is bounded and does not shrink to 
zero; 

lim 11 e( t )  I( = o (25) 
f+m 

2) 

where e(t) is the parameter identification error, defined by 

Iim y ( t  - l ) e ( t )  = 0 
t+m 

3) 

which implies that the normalized error e ( t )  shrinks to zero. 

which implies that the identified parameters behave as the real 
parameters do. The proof of the theorem is given in [I 11. It is pretty 
standard and is omitted here. 

SIMULATION AND APPLICATION TO A ROBOT 

The capabilities of the IMLS algorithm are demonstrated via a 
simulation and via application to an industrial robot. 

Simulation 
The following one-step-ahead predictor model was used: 

The input u( t )  is a random Gaussian sequence with 6 Hz band- 
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width and the sampling time T = 0.05 s. The following parameters 
have been selected to reflect rapid variation: 

(30) a ( t )  = 0.5 . sin (0.4t)  

where f = int ( 7 /  T) and 7 is the elapsed time 

for 0 5 t 5 120 

5 + 1.5t  for 0 5 t 5 40 

65 - 0.0375( f - 80)2 
for 40 < t < 80 , (31) 
for 80 I t 5 120 

For purpose of comparison, the simulations of two cases were 
conducted: ordinary recursive least squares with constant covariance 
modification (RLS/CCM) algorithm, [IO], [ l l ]  and the proposed 
IMLS algorithm. 

The initial values for the two c:ses were selected as follows: 
Case I :  RLS/CCM algorithm e(0) = 0, c = 1, and P( - 2) = I ;  
Case 2: IMLS algorithm e( t )  = 0, c = 1, and P( - 2) = I. 
Using the information in (30), (31) leads to the selection of the 

following 6 X 6 matrix A for the internal model 

O l  r o 3  0 - 3 0 1  
2.34 0 -2.34 0 

1 0 0  0 

0 0  1 0 0 0  
A = l  0 1 0 0 : :I 

L o  0 0 1 o O J  

Matrix A is obtained by using difference equations which de- 
scribe the dynamics of the parameters a( t )  and P ( t ) .  The technique 
is presented in the section on problem formulation. It can be shown 
that the difference polynomial operator for parameter a( t )  is 

( 1  - q - ' ) ( l  - 1.34q-' + q - 2 )  

where the term (1 - q-  I )  was added in order to prevent singularity 
problems (see (7)). The difference polynomial operator for parame- 
ter P ( t )  is 

(1 - 4 - ' ) 3  

For the purpose of demonstration of the capability of the algorithm 
to a more general case, this a priori informatibn is disregarded and 
the parameters a and @ are approximated by ramp functions leading 
to the following 4 x 4 approximate internal model matrix A:  

A = {'I' iz] I , O E R * . ~  

Simulation results of Case 1 are given in Figs. 1-3. The parame- 
ter a in (30) and the estimated Cr are shown in Fig. 1, the parameter 

in (31) and the estimated p are shown in Fig. 2, and the trace of 
matrix P ( t )  is given in Fig. 3. The corresponding IMLS simulation 
results (Case 2) are given in Figs. 4-6 and demonstrate excellent 
tracking ability. It can be seen from these results that when 0 is 
constant the difference between the two cases is insignificant. How- 
ever, if /3 varies more rapidly, such as ramp or acceleration 
functions, the IMLS performs much better. 

Selecting a higher order model to describe the parameters a and 
could further reduce the tracking errors as compared to those 

presented in Figs. 4 and 5. It also increases, however, the computa- 
tional effort and possibly the sensitivity to noise. Figs. 3 and 6 show 
that, for rich input, the trace of the covariance matrix is bounded 
which is consistent with the theorem. 

IMPLEMENTATION ON A ROBOT 
The algorithm was applied to identify the parameters of a two link 

Scara-type robot of the Hirata company, which is shown in Fig. 7. 
Each link was driven by a dc motor whose velocity was controlled 
by a servo loop with PI (proportional and integrator) controller. A 
mass of about 5 kg was mounted on the end effector. The bandwidth 

- ,b [ESTIMATED] 

1.2- 

-2.0: . . . . : . . . . I :  

0 12 24 36 48 60 72 84 96 108 120 

ITERATION NUMBER [ 11 

Fig. 1. Parameter a: Estimated versus real (RLS/CCM). 
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Fig. 7. The Hirata robot. 

of the base link velocity loop is influenced by the position of the 
second link. When the angle between the links was approximately 
10" the bandwidth was measured to be 10 Hz and for an angle of 
170" the bandwidth was 4 Hz. For sufficiently fast sampling rates 
the dynamics can be approximately described by the following 
first-order time-varying discrete equation: 

w(k + 1) = a ( k ) w ( k )  + P ( k ) u ( k )  (33) 
where w(k) is the base link velocity measured by the tachometer, 
and a(k) and P(k) are the time-varying system parameters. 
Equation (33) was derived by first analyzing by FFT the system 
response and obtaining the transfer function of the robot at different 
values of the relative angle between the links $(k). Then discretiza- 
tion of the analog transfer function using the 2-transform. 

The parameters a(k) and P(k) were found to be best fitted by 
the following relations 

a(k) = e x p [ - ~ / ~ ( k ) ]  

P (  k) = 4.6[ 1 - a( k)] 

~ ( k )  = 0.0536 + 0 . 0 4 4 3 ~ 0 ~  $(k) (34) 

The IMLS algorithm was capable to identify the parameters a( k) 
and P( k) even for a case where the angle $( k) was varied between 
20" to 125" with a frequency of 1 Hz with a sampling rate of 10 ms 
and the constant [of (20)] set to c = The IMLS algorithm was 
implemented in assembler language on a Digital PDP-11/23 rnini- 
computer. The internal model matrix A was selected to have the 
same ramp functions as given in (32). The input to the system u(k)  
was selected to be harmonic of amplitude of 18"/s and 3 Hz. The 
frequency and amplitude of the excitation signal must be carefully 
selected. The frequency must be higher than that of the variation of 

0 25- 

0 25- 4 

+ 

- - 
0 . 7 5  _- -Z-... ---. -------- --? 

a [ R E A T - - - - - -  a L E S T t M A T E D 7  4 

1 2 5 0 .  . . . . . . . . : 
0-3 06 0-9 1.2 1.5 I 8  2-1 2.4 2-7 3.0 
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Fig. 8. Simulation results of Hirata robot parameter identification by IMLS 
algorithm. 

I O  

0 . 5  

0 

-0 5 

-I 0 

t [sec] 
Fig. 9. Laboratory results of Hirata robot parameter identification by 

IMLS algorithm. 

the angle $(k) but not too high as to cause rattling in the gear teeth. 
The amplitude need also be high enough to minimize the backlash 
effects but not too high as to cause saturation of the control system. 

Simulation results are given in Fig. 8 and results obtained from 
the robot are given in Fig. 9. It was observed that a single frequency 
harmonic input function was sufficient to excite the system and the 
algorithm to yield satisfactory identification quality. Identification 
results on the robot are quite compatible with those of the simula- 
tions. 

DISCUSSION 
It was shown in [ 111, that c is related to the lower bound of the 

covariance matrix P. The constant c in (20) is arbitrary but still 
care must be exercised in its selection. If c is selected too low then 
the gain vector K ( t )  is also low and the tracking ability is limited. 
If, on the other hand, c is selected too high then the algorithm 
becomes sensitive to noise and to numerical errors due to the high 
gain. Thus, a trial and error procedure is indicated for the best 
selection. 

The theorem was strictly proven for the case when the internal 
model represents accurately the time variation of the parameters and 
the condition for PE was satisfied. 

If the PE condition is not satisfied, the algorithm can not be used 
to accurately identify the real parameters. In the abscence of PE, the 
algorithm would be unstable if the matrix A is not stable. Stability 
of the algorithm may still be achieved by selecting a stable matrix 
A or by using resetting procedures. 

In cases where the model does not describe exactly the actual 
variations in the parameters, so that certain deviations do exist, then 
it is still possible to apply an approximate internal model and obtain 
reasonable results. Several options for applying the approximate 
model follow. 
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as : 
[4] e ( t )  = A e ( t  - 1) + W ( t  - 1) .  (35) 

In this equation the deviation from the exact internal model is 
described by a white noise W(t - 1) with a covariance matrix d. 

2) If no a priori information (such as time constant, natural 
frequency, etc.) about the parameters variation is given, A may be 
selected such that the parameters have a polynomial form of some 
order. The algorithm will then find the best coefficients of the 
polynomial that approximate the parameters. For example, if a ramp 
function (polygonal lines) is selected as an approximation, the 
algorithm will then find the best slope in a finite time interval using 
the last two successive samples of each parameter. If the variations 
in the slopes are large then identification errors may occur. These 
errors can be minimized by increasing the sampling rate. 

3) The identification quality may be improved by selecting poly- 
nomials of higher order for the approximation and by increasing the 
sampling rate. For example, the eigen polynomial of an harmonic 
function, namely, [l - 2 . exp(-wT)q-’  + q - * ] ,  where w is the 
frequency and T is the sampling time, can be approximated by the 
eigen polynomial of a ramp function, if T is sufficiently small, such 
that [ext ( -  U T )  --t 11. If the high-sampling rate still does not im- 
prove the identification quality, then the order of the approximating 
polynomials has to be increased. 

4) Minimization of the identification errors may be achieved by a 
selection of higher order of the approximating polynomials. Hence, 
similar to the results of Zheng [2], a selection of very high-order 
will increase the computational burden, large numerical errors may 
occur, and the identification may be resonative. It is obvious that the 
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Full and Reduced-Order Observer Design for 
Discrete Stochastic Bilinear Systems 

appropriate sampling rate and the order of the approximating poly- 
nomials must be selected by a trial and error procedure. 

5) If the measurements are noisy (the stochastic case), such that 
the output equation (1 1) can be rewritten as follows: 

y ( t )  = o ~ ( t  - i ) q t  - 1) + w ( t )  (36) 
where w ( t )  is a white noise with variance r then the IMLS 
algorithm can be suited to this case by replacing in (9) the variance 
r instead of 1. The proof of the convergence is based on the Kalman 
filter theory [14] and it is omitted for the sake of brevity. 

CONCLUSION 

A new algorithm for identification of dynamically varying linear 
SISO systems was investigated, using an internal model to represent 
the system parameter variation. A new parameterization of the 
system equations yields, with the aid of Kalman filter theory, the 
desired algorithm. Boundedness of the covariance matrix, P ( t ) ,  and 
the exponential convergence of the algorithm were proven under 
conditions of persistent excitation of the measurement vector in the 
time-varying case (21). The capability of the algorithm were demon- 
strated through results from a robot and by simulation results both 
achieved good tracking of fast and irregular time-varying parame- 
ters. 
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Ahtruct- We consider a general discrete-time stochastic bilinear sys- 
tem model and derive the mean square optimal linear unbiased observer 
equations to be used in reconstructing a prespecified linear combination 
of state variables based on noisy output measurements. 

INTRODUCTION AND PROBLEM STATEMENT 

This note presents a reduced-order observer design procedure for 
system and measurement models which contain multiplicative as 
well as additive noise components. Such models are alternatively 
called stochastic bilinear, state-dependent noise models or multi- 
plicative noise models. Due to the several application areas such as 
satellite attitude control [ 11, chemical reactor control [2], macroeco- 
nomics [3], population dynamics [4], time-sharing and random 
round-off errors in computer operation [5], and recently, robustness 
studies [6] - [ 8 ] ,  there has been interest in estimator design [9] - [ 141 
for various such models. In this study, we consider the general 
stochastic bilinear model used in the works [12]-[14] and extend the 
mean square optimal unbiased reduced-order observer results of 
[ 151 derived for deterministic parameter systems to this case. 

Let us consider the discrete stochastic bilinear system 
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