Physics 506 Winter 2008

Homework Assignment #1 — Solutions

Textbook problems: Ch. 8: 8.2, 8.4

8.2 A transmission line consisting of two concentric circular cylinders of metal with con-
ductivity o and skin depth §, as shown, is filled with a uniform lossless dielectric (u, €).
A TEM mode is propagated along this line. Section 8.1 applies.

a) Show that the time-averaged power flow along the line is

b
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where Hj is the peak value of the azimuthal magnetic field at the surface of the
inner conductor.

A TEM mode is essentially a two-dimensional electrostatic problem. Thus we
start by finding the electric field between the two cylinders. By elementary means,

it should be clear that 4
Et — —pA
p

where A is a constant that will be determined shortly. Assuming wave prop-
agation in the +z direction, we use B; = ,/uez x E; to obtain the magnetic

field n
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This indicates that the magnitude of the magnetic field at the inner conductor is
H(a) = \/¢/u(A/a). Defining this as Hy gives
. a . a ~
Ey = \/EHO—P, Hy =Ho—¢ (1)
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The (harmonic) Poynting vector is then
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so the power flow is
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b) Show that the transmitted power is attenuated along the line as

§:
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where
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We compute the attenuation coefficient according to

1 dP
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The power P was calculated in part a. For the power loss per unit length of the
waveguide, we use
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Note that there are two boundaries, one at p = a (with circumference 27wa) and
the other at p = b (with circumference 27b). This gives

apP |2a
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Inserting this power loss expression and the power (2) into (3) yields
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The characteristic impedance Z; of the line is defined as the ratio of the voltage
between the cylinders to the axial current flowing in one of them at any position

z. Show that for this line
Zo— L |F “In <b>
27r a

Since Zy = |AV|/1, we need to compute the voltage difference between the cylin-
ders as well as the current. For the voltage difference, we have

b b
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where we have used (1) for the electric field. In addition, the current is given by
integrating the surface current density. For the inside conductor, we have

K=nxH=px (Hﬂ&) — Hy?



Hence
I:% |K|dl = 2maHy
C

Taking the ratio Zy = |AV|/I results in
- Eu()
Show that the series resistance and inductance per unit length of the line are
h= 27r105 (é * %)
- {in(2) 2 (o)

where . is the permeability of the conductor. The correction to the inductance
comes from the penetration of the flux into the conductors by a distance of order 9.

We may obtain the series resistance from the power loss

dP
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where R denotes the resistance per unit length. Using —dP/dz from (4) as well
as the current computed above, we find

p_ 2 (_dP\_ 1 atb
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For the inductance per unit length, we compute the energy per unit length stored
in the magnetic field. Inside the volume of the waveguide, we have
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In addition, since some of the magnetic field penetrates the conducting walls, we
use the approximation

H(¢) = H| e—C/0,iC/8

where ( is the distance into the conductor. Assuming the skin depth is much
less than the thickness of the conductor as well as the radius of curvature, we
approximate
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where C' is the circumference of the wall. On the inside wall, we have C' = 27a
and H| = Hy, while on the outside wall, we have C' = 27b and H|| = Hy(a/b).
Hence

Usalls = %6]H0\2[27ra + 27b(a/b)?] = %W&]HO\Q%((; +0)

Using
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we end up with

8.4 Transverse electric and magnetic waves are propagated along a hollow, right circular
cylinder with inner radius R and conductivity o.

a) Find the cutoff frequencies of the various TE and TM modes. Determine nu-
merically the lowest cutoff frequency (the dominant mode) in terms of the tube
radius and the ratio of cutoff frequencies of the next four higher modes to that of
the dominant mode. For this part assume that the conductivity of the cylinder
is infinite.

The eigenvalue equation for either TE or TM modes is

Vi +~%w(p,¢) =0

where (R, ¢) = 0 for TM modes or dy)(p, ¢)/dp|,=r = 0 for TE modes. Writing

V(p, @) = (p)e™™?, the radial equation (in cylindrical coordinates) becomes
<1 g 0 b2 m2) B(p) = 0
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which is solved by Bessel functions. Avoiding the Neumann function which blows
up at p = 0, we have
V(p, ¢) ~ Jm(p)e™?

The boundary conditions then place conditions on . For TM modes (Dirichlet
conditions), we demand .J,,,(yR) = 0. Hence

T x
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where x,,,, is the n-th zero of J,,. For TE modes (Neumann conditions), on the
other hand, we demand J/, (yR) = 0. Hence

(TE) Vmn = —— or = nn




where 2/, is the n-th zero of J/ . Sorting through the zeros of J,,, and J;,, the

lowest five modes are given by
mode \//Emen Wmn /wdominant
TEq; 1.841 1
TMoq 2.405 1.306
TEo; 3.054 1.659
TE02 and TM11 3.832 2.081

Note that the TEgy and TM7; modes are degenerate. This is a special case where
the Bessel identity Jj(¢) = —J1(¢) demonstrates that zg ,,,1 = T1y.

Calculate the attenuation constants of the waveguide as a function of frequency
for the lowest two distinct modes and plot them as a function of frequency.

The computation of the attenuation coefficients involves computing both power
P and power loss —dP/dz. We first consider TM modes. The power is given by

1 2 9 1/2
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Using ¢ = J,,,(7p)eT™? gives

R
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where the expression in the square brackets comes from the Bessel function or-
thogonality relation

/0 Jo(@vmp/a)Jy(Xunp/a)pdp = %G2Ju+1(xvm)25mn
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For a TM mode, the power loss is given by
_d_P:L( w )2]4 L jovf,
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Using 72,,, = pew?,,,, we obtain
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We may now have some fun with Bessel functions. Using the recursion relation

%m@:%%@—%@

as setting ( = x,,, to be a zero of J,,, we obtain

Jm—i—l(xmn) = _J;n(xmn)
This allows us to rewrite the power loss as
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Given (6) and (7), the TM,,,, attenuation coefficient is obtained by setting
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Note that 1/R = C/(2A) were C = 2rR and A = wR? are the circumference and
area of the cylindrical waveguide. Since § = dypn\/Wmn/w (where §,,, is the skin
depth at the cutoff frequency wy,,), we get the standard TM expression with the
geometric factor &,,, = 1.

For the TE mode, the power loss calculation is somewhat lengthier, as it involves
both H, and H;. We begin with the power, which is given by a similar expression
as (5), however with a factor of y/u/e instead. The Bessel normalization integral
is now

R
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which gives
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This time, the power loss expression is
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There are two terms to evaluate. The simple one is

# 10fd = @nR) T,
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For the gradient term, we note that 7 = —p on the inside of the cylinder. And
Vi = p0, + (1/p)pd,. Hence
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Combining these two terms yields
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Using this for the power loss and (8) for the power itself gives an attenuation
coefficient
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This demonstrates that the TE geometric factors are &,,,, = m?/(z}2, —m?) and
Nmmn = 1.
The attenuation constants are plotted as follows
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where




