
Physics 506 Winter 2008

Homework Assignment #7 — Solutions

Textbook problems: Ch. 10: 10.12, 10.14, 10.18
Ch. 11: 11.3

10.12 A linearly polarized plane wave of amplitude E0 and wave number k is incident on
a circular opening of radius a in an otherwise perfectly conducting flat screen. The
incident wave vector makes an angle α with the normal to the screen. The polarization
vector is perpendicular to the plane of incidence.

a) Calculate the diffracted fields and the power per unit solid angle transmitted
through the opening, using the vector Smythe-Kirchhoff formula (10.101) with
the assumption that the tangential electric field in the opening is the unperturbed
incident field.

We use the vector Smythe-Kirchhoff formula

~E =
ieikr

2πr
~k ×

∫
S1

n̂′ × ~E(~x ′)e−i~k·~x
′
da′ (1)

To set up the problem, we assume the screen lies in the x-y plane (at z = 0), with
the circular hole centered at the origin. We then take the incident wave vector
~k0 to lie in the x-z plane and at an angle α with the z axis

~k0 = k(x̂ sinα+ ẑ cosα)

This defines the plane of incidence to be the x-z plane. Since the polarization
vector is perpendicular to the plane of incidence, we take

ε̂0 = ŷ

As a result, the incident plane wave is described as

~E(~x ′) = E0ε̂0e
i~k0·~x ′

= E0ŷe
ik(x′ sinα+z′ cosα)

Since the normal to the screen is n̂′ = ẑ, we see that

n̂′ × ~E(~x ′) = ẑ × ~E(~x ′) = −E0x̂e
ik(x′ sinα+z′ cosα)

Inserting this into (1) gives

~E = − iE0e
ikr

2πr
(~k × x̂)

∫
eik(x′ sinα+z′ cosα)e−i

~k·~x ′
∣∣∣
z′=0

da′

= − iE0e
ikr

2πr
(~k × x̂)

∫
eikx

′ sinαe−i(kxx
′+kyy

′)da′



The integral is over the area of the circular aperture of radius a. This is best
done in polar coordinates. Taking

x′ = ρ cosβ, y′ = ρ sinβ

along with the the spherical coordinates decomposition of the scattered wavevec-
tor

kx = k sin θ cosφ, ky = k sin θ sinφ, kz = k cos θ

gives

~E = − iE0e
ikr

2πr
(~k × x̂)

∫ a

0

ρ dρ

∫ 2π

0

dβeikρ[sinα cos β−sin θ cos(φ−β)]

This integral is identical to that encountered in Section 10.9. The result is then
straightforward

~E = − iE0e
ikr

r
a2(~k × x̂)

J1(kaξ)
kaξ

where
ξ =

√
sin2 θ + sin2 α− 2 sin θ sinα cosφ

Writing out explicitly

~k × x̂ = ŷkz − ẑky = k(ŷ cos θ − ẑ sin θ sinφ)

gives

~E = − iE0e
ikr

r
ka2(ŷ cos θ − ẑ sin θ sinφ)

J1(kaξ)
kaξ

The scattered power is

dP

dΩ
=

r2

2Z0
| ~E|2 =

|E0|2a2

8Z0
(ka)2(cos2 θ + sin2 θ sin2 φ)

∣∣∣∣2J1(kaξ)
kaξ

∣∣∣∣2
This may be rewritten in terms of the normally incident power on the aperture

Pi =
|E0|2

2Z0
(πa2) cosα

The result is

ε⊥ :
dP

dΩ
= Pi cosα

(ka)2

4π

(
cos2 θ + sin2 θ sin2 φ

cos2 α

) ∣∣∣∣2J1(kaξ)
kaξ

∣∣∣∣2 (2)

b) Compare your result in part a with the standard scalar Kirchhoff approximation
and with the result in Section 10.9 for the polarization vector in the plane of
incidence.



According to Section 10.9, if the polarization vector is in the plane of incidence,
we would have

ε‖ :
dP

dΩ
= Pi cosα

(ka)2

4π
(
cos2 θ + sin2 θ cos2 φ

) ∣∣∣∣2J1(kaξ)
kaξ

∣∣∣∣2
while for diffraction, we would have

scalar :
dP

dΩ
= Pi cosα

(ka)2

4π

(
cosα+ cos θ

2 cosα

)2 ∣∣∣∣2J1(kaξ)
kaξ

∣∣∣∣2
These two expressions, along with the perpendicular polarization one of (2), differ
by the slowly varying angular factors in the parentheses. However, the main
diffraction feature arising from J1(ζ)/ζ is the same in all three cases. Thus the
diffraction patterns are essentially the same regardless of the scalar or vector
nature of the radiation. Note also that, for normal incidence (ie α = 0), the
perpendicular and parallel polarization expressions are identical, up to a 90◦

rotation of the polarization vector.

10.14 A rectangular opening with sides of length a and b ≥ a defined by x = ±(a/2),
y = ±(b/2) exists in a flat, perfectly conducting plane sheet filling the x-y plane. A
plane wave is normally incident with its polarization vector making an angle β with
the long edges of the opening.

a) Calculate the diffracted fields and power per unit solid angle with the vector
Smythe-Kirchhoff relation (10.109), assuming that the tangential electric field in
the opening is the incident unperturbed field.

The vector Smythe-Kirchhoff relation states

~E =
ieikr

2πr
~k ×

∫
S1

n̂′ × ~E(~x ′)e−i~k·~x
′
da′

where for a normally incident plane wave, the incident unperturbed field may be
taken as

~E(~x ′) = E0ε̂0e
ikz′

= E0(x̂ sinβ + ŷ cosβ)eikz
′

For the rectangular screen, the surface S1 is the rectangle at z′ = 0 with |x| ≤ a/2
and |y| ≤ b/2 and surface normal n̂′ = ẑ. The resulting integral is then

~E =
iE0e

ikr

2πr
~k ×

∫
ẑ × (x̂ sinβ + ŷ cosβ)e−i~k·~x

′
da′

=
iE0e

ikr

2πr
~k ×

∫ a/2

−a/2
dx′
∫ b/2

−b/2
dy′ (ŷ sinβ − x̂ cosβ)e−i~k·~x

′

=
iE0e

ikr

2πr
~k × (ŷ sinβ − x̂ cosβ)

∫ a/2

−a/2
dx′ e−ikxx

∫ b/2

−b/2
dy′ e−ikyy



The integrals are simple to perform, and yield

~E =
2iE0e

ikr

πr
[−x̂kz sinβ− ŷkz cosβ+ ẑ(kx sinβ+ky cosβ)]

sin(kxa/2) sin(kyb/2)
kxky

Because of the rectangular geometry, this expression is simplest when expressed
in cartesian components. However, if we choose to write ~k in terms of spherical
components, we may substitute in

kx = k sin θ cosφ, ky = k sin θ sinφ, kz = k cos θ

to obtain

~E =
2iE0e

ikr

πkr
[−x̂ cos θ sinβ − ŷ cos θ cosβ + ẑ sin θ sin(φ+ β)]

×
sin
(
ka
2 sin θ cosφ

)
sin θ cosφ

sin
(
kb
2 sin θ sinφ

)
sin θ sinφ

Note the standard sin ζ/ζ diffraction patterns for the x and y directions.

The scattered power may be expressed as

dP

dΩ
=

r2

2Z0
| ~E|2 =

1
2Z0

4|E0|2

π2k2
[cos2 θ + sin2 θ sin2(φ+ β)]

×
sin2

(
ka
2 sin θ cosφ

)
(sin θ cosφ)2

sin2
(
kb
2 sin θ sinφ

)
(sin θ sinφ)2

In terms of the normally incident power on the aperture

Pi =
|E0|2

2Z0
ab

the above becomes

dP

dΩ
=
Pi
π2

[cos2 θ + sin2 θ sin2(φ+ β)]

×
sin2

(
ka
2 sin θ cosφ

)
ka
2 (sin θ cosφ)2

sin2
(
kb
2 sin θ sinφ

)
kb
2 (sin θ sinφ)2

(3)

Note that, for small openings, this reduces to

dP

dΩ
=
Pi
π2

ka

2
kb

2
[cos2 θ + sin2 θ sin2(φ+ β)]

b) Calculate the corresponding result of the sclar Kirchhoff approximation.



For the scalar Kirchhoff approximation, we have

ψ = −e
ikr

4πr

∫
S1

[n̂′ · ~∇′ψ + i~k · n̂′ψ]e−i~k·~x
′
da′

Here we take

ψ(~x ′) = ψ0e
ikz′

, n̂′ · ~∇′ψ = ẑ · ~∇′ψ =
∂

∂z′
ψ = ikψ0e

ikz′

Hence

ψ = −e
ikr

4πr

∫
(ikψ0 + ikzψ0)e−i~k·~x

′
da′

= − iψ0e
ikr

4πr
(k + kz)

∫ a/2

−a/2
dx′ e−ikxx

∫ b/2

−b/2
dy′ e−ikyy

The integrals are identical to the ones performed above. The result (using spher-
ical components of ~k ) is

ψ = − iψ0e
ikr

πkr
(1 + cos θ)

sin
(
ka
2 sin θ cosφ

)
sin θ cosφ

sin
(
kb
2 sin θ sinφ

)
sin θ sinφ

Using dP/dΩ = r2|ψ|2 and Pi = |ψ|2ab, the scalar expression for scattered power
becomes

dP

dΩ
=
Pi
π2

[
cos4 θ

2

]
sin2

(
ka
2 sin θ cosφ

)
ka
2 (sin θ cosφ)2

sin2
(
kb
2 sin θ sinφ

)
kb
2 (sin θ sinφ)2

Comparing this scalar expression to the vector expression (3), we see that the
only difference lies in the additional polarization factors enclosed in the square
brackets.

c) For b = a, β = 45◦, ka = 4π, compute the vector and scalar approximations to
the diffracted power per unit solid angle as a function of the angle θ for φ = 0.
Plot a graph showing a comparison between the two results.

For the above parameters, the vector and scalar expressions reduce to

dP

dΩ

∣∣∣∣
vector

=
Pi
π2

[ 1
2 (1 + cos2 θ)]

sin2(2π sin θ)
sin2 θ

dP

dΩ

∣∣∣∣
scalar

=
Pi
π2

[cos4(θ/2)]
sin2(2π sin θ)

sin2 θ

These two expressions (normalized to unit power) may be plotted on the same
graph
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In fact, they are virtually indistinguishable. To show that the vector and scalar
expressions are actually not identical, we may plot the difference dP/dΩ|vector −
dP/dΩ|scalar
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(note the different scale on the vectical axis). This difference is entirely dependent
on the polarization factors
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These factors are nearly identical in the forward direction (at the diffraction
peak). Although the difference gets large off axis, there is so little power there
that this difference is essentially unimportant.

10.18 Discuss the diffraction due to a small, circular hole of radius a in a flat, perfectly
conducting sheet, assuming that ka� 1.

a) If the fields near the screen on the incident side are normal ~E0e
−iωt and tangential



~B0e
−iωt, show that the diffracted electric field in the Fraunhofer zone is

~E =
eikr−iωt

3πr
k2a3

[
2c
~k

k
× ~B0 +

~k

k
×

(
~E0 ×

~k

k

)]

where ~k is the wave vector in the direction of observation.

A small hole in a perfectly conducting sheet can be treated as if it were a small
aperture in the side of a waveguide. This was discussed in Section 9.5. In general,
the fields in the hole can be expanded in a multipole expansion, with the electric
and magnetic dipoles being the dominant terms (for ka � 1). In terms of the
normal electric field ~E0 and tangential magnetic field ~H0, the effective dipole
moments for a small circular aperture of radius a turns out to be

~peff =
4ε0a3

3
~E0, ~meff = −8a3

3
~H0 (4)

These results were derived in Sections 3.13 and 5.13. Note that the signs are
chosen for the diffraction region. While this is a diffraction problem, once we
have determined the effective electric and dipole moments due to the aperture,
we may treat this as a radiation problem, with the electric and magnetic fields
given by

~E = − k2

4πε0
eikr

r
[n̂× (n̂× ~peff) + n̂× ~meff/c]

~H =
1
Z0
n̂× ~E

Substituting in (4) gives, for the electric field

~E = −k
2a3

3π
eikr

r
[n̂× ( ~E0 × n̂) + 2c n̂× (µ0

~H0)] (5)

Using ~B0 = µ0
~H0 and n̂ ≡ k̂ = ~k/k then gives

~E = −k
2a3

3π
eikr−iωt

r

[
~k

k
×

(
~E0 ×

~k

k

)
+ 2c

~k

k
× ~B0

]
where we have restored the explicit harmonic time dependence.

b) Determine the angular distribution of the diffracted radiation and show that the
total power transmitted through the hole is

P =
2

27πZ0
k4a6(4c2B2

0 + E2
0)

We may determine the diffracted power by calculating the Poynting vector

dP

dΩ
= r2 dP

da
= r2n̂ · ~S =

r2

2
n̂ · ( ~E × ~H∗) =

r2

2Z0
| ~E|2



Substituting in (5) gives

dP

dΩ
=

k4a6

18π2Z0
|n̂× ( ~E0 × n̂+ 2c ~B0)|2

=
k4a6

18π2Z0

(
| ~E0 × n̂+ 2c ~B0|2 − 4c2|n̂ · ~B0|2

)
=

k4a6

18π2Z0

(
| ~E0|2 − |n̂ · ~E0|2 + 4c2(| ~B0|2 − |n̂ · ~B0|2) + 4c<( ~B∗0 · ( ~E0 × n̂))

)
To proceed, we may choose an explicit coordinate system. We let the screen with
the small hole lie in the x-y plane (at z = 0). Since ~E0 is normal and ~B0 is
tangential to the screen, we let

~E0 = E0ẑ, ~B0 = B0x̂

Specifying the normal vector n̂ in standard spherical coordinates

n̂ = x̂ sin θ cosφ+ ŷ sin θ sinφ+ ẑ cos θ

gives
n̂ · ~E0 = E0 cos θ, n̂ · ~B0 = B0 sin θ cosφ

and
~B∗0 · ( ~E0 × n̂) = −B∗0E0 sin θ sinφ

As a result, the angular power distribution becomes

dP

dΩ
=

k4a6

18π2Z0

(
|E0|2 sin2 θ + 4c2|B0|2(1− sin2 θ cos2 φ)− 4c<(E0B

∗
0) sin θ sinφ

)
The power transmitted through the hole is obtained from the integral

P =
∫ 1

0

d(cos θ)
∫ 2π

0

dφ
dP

dΩ

=
k4a6

18π2Z0

∫ 1

0

d(cos θ)
∫ 2π

0

dφ
(
|E0|2 sin2 θ + 4c2|B0|2(1− sin2 θ cos2 φ)

− 4c<(E0B
∗
0) sin θ sinφ

)
=

k4a6

9πZ0

∫ 1

0

d(cos θ)
(
|E0|2 sin2 θ + 2c2|B0|2(2− sin2 θ)

)
=

2k4a6

27πZ0
(|E0|2 + 4c2|B0|2)

11.3 Show explicitly that two successive Lorentz transformations in the same direction are
equivalent to a single Lorentz transformation with a velocity

v =
v1 + v2

1 + (v1v2/c2)



This is an alternative way to derive the parallel-velocity addition law.

To be explicit, consider a Lorentz boost in the x0-x1 plane with velocity v1 from
the unprimed to the primed frame followed by a boost with velocity v2 from the
primed to the double-primed frame

(x0)′ = γ1(x0 − β1x
1) then (x0)′′ = γ2((x0)′ − β2(x1)′)

(x1)′ = γ1(x1 − β1x
0) (x1)′′ = γ2((x1)′ − β2(x0)′)

When combined, this gives

(x0)′′ = γ1γ2((1 + β1β2)x0 − (β1 + β2)x1)

(x1)′′ = γ1γ2((1 + β1β2)x1 − (β1 + β2)x0)

If this were a single Lorentz boost, then we must be able to write it as

(x0)′′ = γ12(x0 − β12x
1)

(x1)′′ = γ12(x1 − β12x
0)

Comparing the two expressions gives

β12 =
β1 + β2

1 + β1β2
γ12 = γ1γ2(1 + β1β2)

The first term gives the desired velocity addition relation

v12 =
v1 + v2

1 + (v1v2/c2)

However, for consistency, we also have to show that the second term is consistent
with a Lorentz boost. To do this, we consider the square

γ2
1γ

2
2(1 + β1β2)2 =

(1 + β1β2)2

(1− β2
1)(1− β2

2)

=
(1 + β1β2)2

1− β2
1 − β2

2 + β2
1β

2
2

=
(1 + β1β2)2

(1 + β1β2)2 − (β1 + β2)2

=
1

1− ((β1 + β2)/(1 + β1β2))2
=

1
1− β2

12

= γ2
12

Hence this is indeed consistent with a Lorentz boost. Alternatively, the velocity
addition relation can easily be seen in terms of rapidities. For boosts in the x0-x1

plane, we write down

Λ1 =


cosh ζ1 − sinh ζ1
− sinh ζ1 cosh ζ1

1
1





and

Λ2 =


cosh ζ2 − sinh ζ2
− sinh ζ2 cosh ζ2

1
1


By matrix multiplication, we see that the composition of two boosts is then

Λ12 = Λ2Λ1 =


cosh(ζ1 + ζ2) − sinh(ζ1 + ζ2)
− sinh(ζ1 + ζ2) cosh(ζ1 + ζ2)

1
1


Since rapidities ζi are related to velocities βi according to

βi = tanh ζi

we have simply ζ12 = ζ1 + ζ2, or

β12 = tanh(tanh−1 β1 + tanh−1 β2) =
β1 + β2

1 + β1β2

which is identical to the result found above. Finally, note that two successive
Lorentz boosts in different directions generically gives rise to a Lorentz boost
along with a rotation. This is related to the non-Abelian nature of the Lorentz
group.


