
Physics 506 Winter 2006

Homework Assignment #6 — Solutions

Textbook problems: Ch. 10: 10.2, 10.3, 10.7, 10.10

10.2 Electromagnetic radiation with elliptic polarization, described (in the notation of Sec-
tion 7.2) by the polarization vector,

~ε =
1√

1 + r2
(~ε+ + reiα~ε−)

is scattered by a perfectly conducting sphere of radius a. Generalize the amplitude in
the scattering cross section (10.71), which applies for r = 0 or r = ∞, and calculate
the cross section for scattering in the long-wavelength limit. Show that

dσ

dΩ
= k4a6

[
5
8
(1 + cos2 θ)− cos θ − 3

4

(
r

1 + r2

)
sin2 θ cos(2φ− α)

]
Compare with Problem 10.1.

Using a spherical wave expansion with the above polarization vector, we may
write the incident plane wave as

~E =
∑

l

il
√

2π(2l + 1)
1 + r2

[
jl(kr) ~Xl,1 +

1
k

~∇× jl(kr) ~Xl,1

+ reiα(jl(kr) ~Xl,−1 −
1
k

~∇× jl(kr) ~Xl,−1)
]

(and a similar expression for ~H). The scattered wave then takes the normalized
form

~Esc = 1
2

∑
l

il
√

2π(2l + 1)
1 + r2

[
α+(l)h(1)

l (kr) ~Xl,1 +
β+(l)

k
~∇× h

(1)
l (kr) ~Xl,1

+ reiα(α−(l)h(1)
l (kr) ~Xl,−1 −

β−(l)
k

~∇× h
(1)
l (kr) ~Xl,−1)

]
Note that, since the incident wave has both ~ε+ and ~ε− (coherently), the scattered
electric field (essentially the scattering amplitude) has a coherent sum of positive
and negative helicities. The scattering cross section may be written as

dσsc

dΩ
=

π

2k2(1 + r2)

∣∣∣∑
l

√
2l + 1

[
α+(l) ~Xl,1 + iβ+(l)n̂× ~Xl,1

+ reiα(α−(l) ~Xl,−1 − iβ−(l)n̂× ~Xl,−1)
]∣∣∣2



This is the generalization of (10.63), and leads to a total scattering cross section

σsc =
π

2k2(1 + r2)

∑
l

(2l + 1)[|α+(l)|2 + |β+(l)|2 + r2(|α−(l)|2 + |β−(l)|2)]

In the long wavelength limit, we only need to worry about the l = 1 terms in
the above. The partial wave coefficients α±(l) and β±(l) are those for a perfectly
conducting sphere, and are unchanged by the elliptical polarization. For l = 1,
we use the Jackson result

α±(1) = −1
2
β±(1) ≈ −2i

3
(ka)3

As a result, we obtain

dσsc

dΩ
≈ 2π

3k2(1 + r2)
(ka)6

∣∣ ~X1,1 − 2in̂× ~X1,1 + reiα( ~X1,−1 + 2in̂× ~X1,−1)
∣∣2 (1)

We now work out the explicit functional forms of ~X1,1 and ~X1,−1. This is most
straightforward in spherical coordinates where

~X1,±1 =
1√
2
~LY1,±1

Using
~L =

r

i
r̂ × ~∇ = i

(
θ̂

1
sin θ

∂

∂φ
− φ̂

∂

∂θ

)
as well as Y1,±1 = ∓

√
3/8π sin θe±iφ, we find

~X1,±1 = ∓i

√
3

16π

(
θ̂

1
sin θ

∂

∂φ
− φ̂

∂

∂θ

)
sin θe±iφ =

√
3

16π
(θ̂ ± iφ̂ cos θ)e±iφ

This also yields

n̂× ~X1,±1 = r̂ × ~X1,±1 =

√
3

16π
(φ̂∓ iθ̂ cos θ)e±iφ

Inserting these expressions into (1) gives

dσsc

dΩ
=

(ka)6

8k2(1 + r2)

∣∣[θ̂(1− 2 cos θ) + iφ̂(cos θ − 2)
]
eiφ

+ rei(α−φ)
[
θ̂(1− 2 cos θ)− iφ̂(cos θ − 2)

]∣∣2
=

(ka)6

8k2(1 + r2)

∣∣θ̂(1− 2 cos θ)(1 + rei(α−2φ))

+ iφ̂(cos θ − 2)(1− rei(α−2φ))
∣∣2

=
(ka)6

8k2(1 + r2)
[
(1− 2 cos θ)2(1 + r2 + 2r cos(α− 2φ))

+ (cos θ − 2)2(1 + r2 − 2r cos(α− 2φ))
]



Multiplying this out and rearranging terms gives the final result

dσsc

dΩ
= k4a6

[
5
8
(1 + cos2 θ)− cos θ − 3

4

(
r

1 + r2

)
sin2 θ cos(2φ− α)

]
(2)

Alternatively, we could take the result of 10.1a)

dσ

dΩ
= k4a6

[
5
4
− |ε̂0 · n̂|2 −

1
4
|n̂ · n̂0 × ε̂0|2 − n̂0 · n̂

]
and substitute in the polarization

ε̂0 =
1√

1 + r2
(ε̂+ + reiαε̂−)

We take explicitly

n̂0 = ẑ, ε̂± =
1√
2
(x̂± iŷ), n̂0 × ε̂± = ∓iε̂±

as well as
n̂ = sin θ(x̂ cos φ + ŷ sinφ) + cos θẑ

so that

dσ

dΩ
= k4a6

[
5
4
− sin2 θ

2(1 + r2)
|eiφ + rei(α−φ)|2− sin2 θ

8(1 + r2)
|eiφ − rei(α−φ)|2− cos θ

]
= k4a6

[
5
4
− cos θ − 1

2
sin2 θ

(
1 +

2r

1 + r2
cos(α− 2φ)

)
− 1

8
sin2 θ

(
1− 2r

1 + r2
cos(α− 2φ)

)]
= k4a6

[
5
8
(2− sin2 θ)− cos θ − 3

4

(
r

1 + r2

)
sin2 θ cos(α− 2φ)

]
This is identical to the l = 1 partial wave result (2).

10.3 A solid uniform sphere of radius R and conductivity σ acts as a scatterer of a plane-
wave beam of unpolarized radiation of frequency ω, with ωR/c � 1. The conductivity
is large enough that the skin depth δ is small compared to R.

a) Justify and use a magnetostatic scalar potential to determine the magnetic field
around the sphere, assuming the conductivity is infinite. (Remember that ω 6= 0.)

We first note that for harmonic fields (ω 6= 0) both the magnetic field and electric
field must vanish inside a perfect conductor. Furthermore, there are no source
currents outside the solid sphere. As a result of ~J = 0, and since we are in the
long wavelength limit kR � 1 (so we may work with a quasi-static magnetic field



with ~∇ · ~B ≈ 0), we may use a magnetostatic scalar potential ~B = −~∇ΦM , at
least in the vicinity (but always outside) of the sphere. Immediately outside the
sphere, we may take a Legendre expansion

ΦM = −B0z +
∑

l

αl

rl+1
Pl(cos θ)

= −B0rP1(cos θ) +
∑

l

αl

rl+1
Pl(cos θ)

Note that we have taken the incident magnetic field to point along the z direc-
tion. (Since electromagnetic waves are transverse, this means the incident wave is
actually traveling in the x-y plane.) We now use the fact that the perpendicular
magnetic field must vanish at the surface r = R of the conducting sphere. This
gives

0 = Br|r=R = − ∂ΦM

∂r

∣∣∣∣
r=R

= B0P1(cos θ) +
∑

l

(l + 1)αl

Rl+2
Pl(cos θ)

Since the Legendre polynomials form an orthogonal set, this indicates that all αl

must vanish for l 6= 1, while
α1 = − 1

2B0R
3

This gives

ΦM = −B0

(
r +

R3

2r2

)
P1(cos θ) = −B0z

(
1 +

R3

2r3

)
The resulting magnetic field is

~B = −~∇ΦM = B0

[
ẑ − R3

2
3r̂(r̂ · ẑ)− ẑ

r3

]
(3)

The second term is clearly that of a magnetic dipole of strength

~m = −2πR3

µ0

~B0 ( ~B0 = B0ẑ)

This agrees with the conducting sphere result of (10.13). When combined with
the electric dipole term, this gives the long wavelength scattering cross section of
(10.14).

b) Use the technique of Section 8.1 to determine the absorption cross section of the
sphere. Show that it varies as (ω)1/2 provided σ is independent of frequency.

We start with the power loss calculation

Ploss =
1

2σδ

∫
|n̂× ~H|2da



where

n̂× ~H =
1
µ0

r̂ × ~B =
B0

µ0

[
1 +

R3

2r3

]
r=R

r̂ × ẑ = −3B0

2µ0
sin θφ̂

We have used ~B given in (3), and evaluated the field at the surface of the con-
ductor. Integrating this over the sphere gives

Ploss =
1

2σδ

9|B0|2

4µ2
0

∫
sin2 θ R2d cos θ dφ =

3π|B0|2R2

σδµ2
0

For normalization, note that the incident flux is

I0 =
1

2Z0
| ~E0|2 =

c2

2
√

µ0/ε0
| ~B0|2 =

Z0

2µ2
0

|B0|2

This gives an absorption cross section

σabs =
Ploss

I0
=

6πR2

σδZ0

Using δ =
√

2/µ0σω gives

σabs = 6πR2

√
ε0ω

2σ

which is clearly proportional to (ω)1/2 provide σ is independent of frequency.

10.7 Discuss the scattering of a plane wave of electromagnetic radiation by a nonpermeable,
dielectric sphere of radius a and dielectric constant εr.

a) By finding the fields inside the sphere and matching to the incident plus scattered
wave ouside the sphere, determine without any restriction on ka the multipole
coefficients in the scattered wave. Define suitable phase shifts for the problem.

For the spherical wave analysis, we start with the outside solution, which is a
combination of the incident and scattered wave

~E =
∑

l

il
√

4π(2l + 1)[(jl(kr) + 1
2α±(l)h(1)

l (kr)) ~Xl,±1

± 1
k

~∇× (jl(kr) + 1
2β±(l)h(2)

l (kr)) ~Xl,±1]

~H =
1
Z0

∑
l

il
√

4π(2l + 1)[− i

k
~∇× (jl(kr) + 1

2α±(l)h(1)
l (kr)) ~Xl,±1

∓ i(jl(kr) + 1
2β±(l)h(1)

l (kr)) ~Xl,±1]

(4)

Inside the dielectric sphere, we have no sources, and only a modified dielectric
constant εr. As a result, the waves inside the sphere must be ordinary spherical
waves, however with modified wave number

k′ = ω
√

µ0ε = (ω
√

µ0ε0)
√

εr = k
√

εr



Defining also

Z =
√

µ0

ε
=

Z0√
εr

the spherical waves inside the dielectric sphere may be parametrized by

~E =
∑

l

il
√

4π(2l + 1)[aM,±(l)jl(k′r) ~Xl,±1 ±
1
k′

aE,±(l)~∇× jl(k′r) ~Xl,±1]

~H =
1
Z

∑
l

il
√

4π(2l + 1)[− i

k′
aM,±(l)~∇× jl(k′r) ~Xl,±1 ∓ iaE,±(l)jl(k′r) ~Xl,±1]

(5)
Note that the choice of constants was made to simplify the comparison with (4).
Since we have a dielectric boundary, we now perform matching between the inside
and outside fields. Note that this is the spherical generalization of matching plane
waves incident on a flat dielectric boundary. There are four matching conditions,
namely continuity of B⊥, E‖, D⊥ and H‖. For the perpendicular fields, note that

r̂ · ~Xlm = 0

while
r̂ · ~∇× fl(kr) ~Xlm = r̂ × ~∇ · fl(kr) ~Xlm = i~L · fl(kr) ~Xlm = ifl(kr)~L · ~Xlm

= i
√

l(l + 1)fl(kr)Ylm

This indicates that only the curl terms in ~E and ~H survive in the perpendicular
direction. For the parallel fields, on the other hand, both terms contribute. In
particular

r̂ × ~Xlm 6= 0

and

r̂ × (~∇× fl(kr) ~Xlm) = ~∇(fl(kr)r̂ · ~Xlm)− 1
r
fl(kr)( ~Xlm − r̂(r̂ · ~Xlm))

− (r̂ · ~∇)fl(kr) ~Xlm

= −1
r

d

dr
(rfl(kr)) ~Xlm

where we have used r̂ · ~Xlm = 0. Matching linearly independent terms in the
inside (5) and outside (4) solutions gives

B⊥ : aM,±(l)jl(x′) = jl(x) + 1
2α±(l)h(1)

l (x)

H‖ :
√

εraE,±(l)jl(x′) = jl(x) + 1
2β±(l)h(1)

l (x)

aM,±(l)
d

dx′
x′jl(x′) =

d

dx
x(jl(x) + 1

2α±(l)h(1)
l (x))

D⊥ :
√

εraE,±(l)jl(x′) = jl(x) + 1
2β±(l)h(1)

l (x)

E‖ : aM,±(l)jl(x′) = jl(x) + 1
2α±(l)h(1)

l (x)

aE,±(l)
d

dx′
x′jl(x′) =

√
εr

d

dx
x(jl(x) + 1

2β±(l)h(1)
l (x))



where we have defined

x = ka, x′ = k′a = x
√

εr

We note that two of the six equations are redundant (this also happened in the
case of plane waves reflecting and refracting off of a plane dielectric boundary).
This allows us to solve four equations for four unknowns α, β, aE and aM . Since
we are only directly interested in the multipole coefficients α and β, we eliminate
aE and aM from the above to obtain the solution

α±(l) + 1 = −
h

(2)
l (x) d

dx′ x
′jl(x′)− jl(x′) d

dxxh
(2)
l (x)

h
(1)
l (x) d

dx′ x′jl(x′)− jl(x′) d
dxxh

(1)
l (x)

β±(l) + 1 = −
h

(2)
l (x) d

dx′ x
′jl(x′)− εrjl(x′) d

dxxh
(2)
l (x)

h
(1)
l (x) d

dx′ x′jl(x′)− εrjl(x′) d
dxxh

(1)
l (x)

We now note that (at least for real εr) the above expressions are of the form of
a ratio of a complex quantity divided by its complex conjugate. This indicates
that the fractions have unit magnitude, and can be written in terms of real phase
shifts

α±(l) = 1 = e2iδl , β±(l) + 1 = e2iδ′
l

Noting that

e2iδl = −a− ib

a + ib
↔ tan δl =

a

b

gives

tan δl =
jl(x) d

dx′ x
′jl(x′)− jl(x′) d

dxxjl(x)
nl(x) d

dx′ x′jl(x′)− jl(x′) d
dxxnl(x)

tan δ′l =
jl(x) d

dx′ x
′jl(x′)− εrjl(x′) d

dxxjl(x)
nl(x) d

dx′ x′jl(x′)− εrjl(x′) d
dxxnl(x)

(6)

With a bit of simplification, these can be rewritten in the form

tan δl =
xj′l(x)−Bljl(x)
xn′l(x)−Blnl(x)

tan δ′l =
xj′l(x)−B′

ljl(x)
xn′l(x)−B′

lnl(x)

(7)

where the coefficients Bl and B′
l are

Bl = x′
j′l(x

′)
jl(x′)

, B′
l =

1
εr

(
x′

j′l(x
′)

jl(x′)
+ 1− εr

)
(8)

and may be thought of as parametrizing the matching conditions at the boundary
of the dielectric sphere. Note that the expressions for tan δl and Bl are identical



to that from the quantum mechanical scattering problem. The presence of the
primed quantities is the result of vector waves as opposed to scalar waves.

b) Consider the long-wavelength limit (ka � 1) and determine explicitly the dif-
ferential and total scattering cross sections. Compare your results with those of
Section 10.1.B.

For ka� 1 only the lowest (l = 1) phase shift is important. In this case, we may
approximate the spherical Bessel functions

j1(x) =
x

3
(1− x2

10
+ · · ·), n1(x) = − 1

x2
(1 +

x2

2
+ · · ·)

Substituting this directly into (6), and keeping only the lowest non-trivial terms
gives

tan δ1 =
1
45

x3(x′2 − x2) =
1
45

(εr − 1)(ka)5

tan δ′1 =
2
3

εr − 1
εr + 2

x3 =
2
3

εr − 1
εr + 2

(ka)3

The multipole expansions are then approximated by

α±(1) = e2iδ1 − 1 ≈ 2iδ1 =
2i

45
(εr − 1)(ka)5

β±(1) = e2iδ′
1 − 1 ≈ 2iδ′1 =

4i

3
εr − 1
εr + 2

(ka)3

We see that only the β1 (electric dipole) coefficient dominates at low energies.
The scattering cross section is

dσ

dΩ
=

π

2k2

∣∣∣∣∣∑
l

√
2l + 1[α±(l) ~Xl,±1 ± iβ±(l)n̂× ~Xl,±1]

∣∣∣∣∣
2

≈ π

2k2

∣∣∣∣√3
4i

3
εr − 1
εr + 2

(ka)3n̂× ~X1,±1

∣∣∣∣2
=

16π

6k2

(
εr − 1
εr + 2

)2

(ka)6| ~X1,±1|2

= 1
2k4a6

(
εr − 1
εr + 2

)2

(1 + cos2 θ)

This agrees perfectly with the dipole approximation.

c) In the limit εr → ∞ compare your results to those for the perfectly conducting
sphere.

When we take εr → ∞ we are taking x′ =
√

εrx → ∞. In this case, we use a
large argument approximation to the spherical Bessel function jl(x′)

jl(x′) ∼
1
x′

sin(x′ − lπ

2
)



This results in the asymptotic forms of the coefficients (8)

Bl ∼ x′ cot(x′ − lπ

2
)− 1 →∞

B′
l ∼

1
√

εr
x cot(x′ − lπ

2
)− 1 → −1

Substituting this into (7) gives

tan δl =
jl(x)
nl(x)

, tan δ′l =
xj′l(x) + jl(x)
xn′l(x) + nl(x)

=
d
dxxjl(x)
d
dxxnl(x)

which reproduce exactly the perfectly conducting sphere phase shifts.

10.10 The aperture or apertures in a perfectly conducting plane screen can be viewed as the
location of effective sources that produce radiation (the diffracted fields). An aperture
whose dimensions are small compared with a wavelength acts as a source of dipole
radiation with the contributions of other multipoles being negligible.

a) Beginning with (10.101) show that the effective electric and magnetic dipole mo-
ments can be expressed in terms of integrals of the tangential electric field in the
aperture as follows:

~p = εn̂

∫
(~x · ~Etan) da

~m =
2

iωµ

∫
(n̂× ~Etan) da

where ~Etan is the exact tangential electric field in the aperture, n̂ is the normal to
the plane screen, directed into the region of interest, and the integration is over
the area of the openings.

The diffraction result (10.101) states

~E(~x ) =
1
2π

~∇×
∫

apertures

(n̂′ × ~E)
eikR

R
da′ (9)

In the radiation zone, we may take

eikR

R
≈ eikr

r
e−i~k·~x′

Furthermore, for a small aperture (long wavelength limit), we may expand the
second exponential

eikR

R
≈ eikr

r
(1− i~k · ~x′)



Inserting this into (9) and noting that we may use the replacement ~∇ → i~k in
the radiation zone, we obtain the expansion

~E =
i

2π

eikr

r
~k ×

∫
(n̂′ × ~E)(1− i~k · ~x′ ) da′ (10)

We start with the first term in the expansion

~E1 =
i

2π

eikr

r
~k ×

∫
n̂′ × ~E da′

which may be compared with the electric field of magnetic dipole radiation (in
the radiation zone)

~E = −Z0

4π
k2 eikr

r
k̂ × ~m

This allows us to read off the effective magnetic dipole moment

~m =
2

ikZ0

∫
n̂′ × ~E da′ =

2
iωµ0

∫
n̂′ × ~E da′ (11)

The effective electric dipole moment is somewhat trickier to extract. It is related
to the second term in (10), which we write as

~E2 =
1
2π

eikr

r
~k ×

∫
(n̂′ × ~E)(~k · ~x ′) da′ (12)

Since we have a flat screen, the normal vector n̂′ is constant. Furthermore, the
outgoing momentum vector ~k is unrelated to the integration coordinates (which
line on the screen). Thus these two vectors may be pulled out of the integral.
This means, we need to evaluate the integral (given in components)∫

Eix
′
j da′

where the indices i and j only lie in the screen directions (ie i, j = 1, 2 if we take
n̂′ = ẑ). We now show that∫

Eix
′
j da′ = 1

2δij

∫
~E · ~x ′ da′ (13)

where we reemphasize that i and j lie in the screen directions only. Perhaps the
most direct way to prove this is to write Eix

′
j in tensor form

~E ⊗ ~x ′ =
(

E1x
′
1 E1x

′
2

E2x
′
1 E2x

′
2

)
=

1
2

(
E1x

′
1 + E2x

′
2 0

0 E1x
′
1 + E2x

′
2

)
+

1
2

(
E1x

′
1 − E2x

′
2 2E1x

′
2

2E2x
′
1 −E1x

′
1 + E2x

′
2

)
= 1

2δij( ~E · ~x ′) + 1
2 [Eix

′
j − (n̂′ × ~x ′)i(n̂′ × ~E)j ]

(14)



The second term vanishes when integrated over the openings. This is because we
may use ~∇× ~E = 0 in a source-free region. Then

0 =
∫

x′ix
′
j n̂

′ · (~∇′ × ~E) da′ = εklmn̂′k

∫
x′ix

′
j∂lEm da′

= −εklmn̂′k

∫
∂l(x′ix

′
j)Em da′ = n̂′k

∫
(εikmx′j + εjkmx′i)Em da′

=
∫

[x′i(n̂
′ × ~E)j + x′j(n̂

′ × ~E)i] da′

(15)

Note that the surface term arising from the integration by parts vanishes because
it is proportional to E‖, which must vanish on the boundaries of the openings.
Substituting in explicit components ij = 11, 12, and 22 then proves that the
integral of E2x

′
1, E1x

′
1−E2x

′
2, and E1x

′
2 vanish, as needed to remove the second

term from (14). This can also be seen directly by taking a cross product of (15)
with n̂′ in the ith component to get∫

[(n̂′ × ~x ′)i(n̂′ × ~E)j − x′jEi] da′ = 0

In any case, the result is simply (13), which may be substituted into (12) to
obtain

~E2 =
1
4π

eikr

r
~k × (n̂′ × ~k)

∫
~x ′ · ~E da′

= − 1
4π

eikr

r
~k × (~k × n̂′)

∫
~x ′ · ~E da′

Comparing this with the radiation patter for electric dipole radiation

~E = − k2

4πε0

eikr

r
k̂ × (k̂ × ~p)

gives an effective electric dipole moment

~p = ε0n̂
′
∫

~x ′ · ~E da′

Note the curious fact that the magnetic dipole term comes from the lowest order
in the expansion of (9), while the electric dipole term comes from the next order.
This is ‘backwards’ from what happens for a conventional source given by a
specified current density.

b) Show that the expression for the magnetic moment can be transformed into

~m =
2
µ

∫
~x(n̂ · ~B) da



Be careful about possible contributions from the edge of the aperture where some
components of the fields are singular if the screen is infinitesimally thick.

To relate the electric field to the magnetic field, we may use Faraday’s equation
for harmonic fields ~∇× ~E − iω ~B = 0 to write

n̂′ · (~∇′ × ~E) = iω(n̂′ · ~B)

Multiplying this by a vector ~x ′ and integrating gives

iω

∫
~x ′(n̂′ · ~B) da′ =

∫
~x ′[n̂′ · (~∇′ × ~E)] da′

=
∫

~x ′εijkn̂′i∂jEk da′

= −
∫

∂j(~x ′)εijkn̂′iEk da′ =
∫

n̂′ × ~E da′

Note that for integration by parts, we use the fact that n̂′ is a constant surface
normal vector and that E‖ vanishes at the edges of the aperture. More precisely,
the generalization of Stokes’ theorem indicates that the surface term is of the
form ∮

~x ′( ~E · d~l )

so the electric field contribution indeed arises only from the parallel component
to the edge of the aperture. Finally, substituting this integrated relation between
~E and ~B into (11) gives

~m =
2

iωµ0

∫
n̂′ × ~E da′ =

2
µ0

∫
~x ′(n̂′ · ~B) da′


