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1. Problem 8.6 10 Points

a): TMmnp:

ωmnp =
1

R
√

µε

√
x2

mn + p2π2y2 with y =
R

L

where m, p = 0, 1, 2.. and n = 1, 2, .. and xmn is the n-th zero of Jm(x). The frequencies of the TMmn0 do
not depend on the cavity length L.

TEmnp:

ωmnp =
1

R
√

µε

√
x′2mn + p2π2y2 with y =

R

L

where m = 0, 1, 2.. and n, p = 1, 2, .. and xmn is the n-th zero of Jm(x). The frequencies of all TE-modes
depend on both the cavity length and radius.

As the figure shows, the ground mode is either TE111 or TM010, dependent on R
L .

At y = 0.67, the fundamental mode is the TM010. Its fields are

Ez = ψ(ρ, φ) cos
(pπz

L

)
= E0J0

(x01ρ

R

)

Et = 0

Ht = −φ̂
iεω
γ2

E0
x01

R
J ′0

(x01ρ

R

)
= φ̂

iεω
γ2

E0
x01

R
J1

(x01ρ

R

)

By Eq. 8.92 in Jackson, the intracavity energy is

U = E2
0

πLε

2

∫ R

0

ρJ2
0

(x01ρ

R

)
dρ = E2

0

πεLR2

4
J2

1 (x01)

The dissipation power due to Ohm-type heating is

P =
1

2σδ

∫

surface

|H|2 da

=
E2

0

2σδ

ε2ω2

γ4

x2
01

R2

{
2πRLJ2

1 (x01) + 2× 2π

∫ R

0

ρJ2
1

(x01ρ

R

)
dρ

}



Figure 1: Frequencies of the lowest cavity modes
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where the first term is from the mantle and the second from the end caps. The Q-factor then is, using
γ = x01

R ,

Q = ω
U

P

=
2Lσδx2

01

8εωR
{

L + R
[

J ′21 (x01)

J2
1 (x01)

+
(
1− 1

x2
01

)]}

Using the identity xJ ′ν(x) + νjν(x) = xJν−1(x) with ν = 1, it is J ′1(x01)
J1(x01)

= − 1
x01

, and the result simplifies to

Q =
Lσδx2

01

4εωR {L + R}
= ω

σδµ

4
RL

L + R
(1)



where in the second line we have used that for the TM010-mode ω2 = 1
µεR2 x2

01. Since also the skin depth

δ =
√

2
σωµc

and c = 1√
µε and µ = µc, this can be expressed as

Q =
L
√

R

R + L

√
σµcx01

2

For a numerical result, use µ = µ0, x01 = 2.405, R = 2cm, L = 3cm, σ = 1
1.7×10−8Ωm . Then one obtains a

quite typical value,

Q = 13850



2. Problem 8.12 10 Points

TM-modes. We use the convention that the normal vector n̂ is pointing inward. The unperturbed solution,
ψ0 = Ez,0, is such that it vanishes on the unperturbed surface S0. The surface perturbation function δ(x, y)
equals the distance between perturbed and unperturbed surface in the direction of n̂, where according to
our choice of n̂ an inward deformation counts positive.

The perturbation will not significantly alter the mode function. We may assume that the effect of the
wall deformation is that the mode function ψ0 shifts together with the wall, thereby maintaining the
proper boundary condition ψ = 0 on S. The leading dependence of ψ0 near the unperturbed surface S0 is
ψ(ξ) = ξ ∂

∂nψ0, where ξ measures the normal distance from S0 (ξ > 0 inside the guide). Shifting ψ such that
its zero moves from S0 to S then is equivalent to assuming a perturbed boundary condition

ψ = −δ(x, y)
∂ψ0

∂n
on S0

The equations and boundary conditions for ψ0 and ψ and the respective eigenvalues γ2
0 and γ2 are

(∇2
t + γ2

0)ψ0 = 0 and ψ0 = 0 on S0

(∇2
t + γ2)ψ = 0 and ψ = −δ(x, y)

∂ψ0

∂n
on S0

Using Green’s 2nd identity in two dimensions with n̂ pointing inward for ψ and ψ∗0 then yields

∫
(ψ∇2

t ψ
∗
0 − ψ∗0∇2

t ψ)da =
∮

S0

(ψ∗0
∂ψ

∂n
− ψ

∂ψ∗0
∂n

)dl

Inserting the above eigenvalue equations and boundary values on S0 it is

(γ2 − γ2
0)

∫
ψψ∗0da =

∮
δ(x, y)

∣∣∣∣
∂ψ

∂n

∣∣∣∣
2

dl

where we have also used that the eigenvalues are real. Since in the area integral the difference between ψ

and ψ0 will only produce higher-order corrections, we may set ψ = ψ0 in the area integral and get

(γ2 − γ2
0) =

∮
S0

δ(x, y)
∣∣∣∂ψ

∂n

∣∣∣
2

dl
∫ |ψ0|2 da

and for the wavenumbers, k2 = µεω2 − γ2,

(k2 − k2
0) = −

∮
S0

δ(x, y)
∣∣∣∂ψ

∂n

∣∣∣
2

dl
∫ |ψ0|2 da

The sign of the result must be such that a reduction of the guide cross section, corresponding to positive
δ, must result in a reduction of k (i.e. an increase of the wavelength in the guide). Our result satisfies



this requirement, but it differs from the result stated in Jackson by a minus sign. The result stated in
Jackson obviously corresponds to a choice of the normal vector n̂ pointing outward (which is opposite to the
convention used in the corresponding portion of the text in Ch. 8.6).

TE-modes. We use the convention that the normal vector n̂ is pointing inward. The unperturbed solution,
ψ0 = Hz,0, is such that its normal derivative ∂

∂nψ0 vanishes on the unperturbed surface S0.

The effect of the wall deformation is that the mode function ψ0 shifts together with the wall, thereby
maintaining the proper boundary condition ∂

∂nψ0 = 0 on S. The leading dependence of the normal derivative
of ψ0 near the unperturbed surface S0 is ∂

∂nψ0(ξ) = ξ ∂2

∂n2 ψ0

∣∣∣
ξ=0

, where ξ measures the normal distance

from S0 (ξ > 0 inside the guide). Shifting ψ0 such that the zero of its normal derivative moves from S0 to
S then is equivalent to assuming a perturbed boundary condition

∂

∂n
ψ = −δ(x, y)

∂2

∂n2
ψ0 on S0

The equations and boundary conditions for ψ0 and ψ and the respective eigenvalues γ2
0 and γ2 are

(∇2
t + γ2

0)ψ0 = 0 and
∂ψ0

∂n
= 0 on S0

(∇2
t + γ2)ψ = 0 and

∂ψ

∂n
= −δ(x, y)

∂2ψ0

∂n2
on S0

Using Green’s 2nd identity in two dimensions with n̂ pointing inward for ψ and ψ∗0 and inserting the above
eigenvalue equations then yields

(γ2 − γ2
0)

∫
ψψ∗0da =

∮

S0

(ψ∗0
∂ψ

∂n
− ψ

∂ψ∗0
∂n

)dl

Setting ψ = ψ0 in the area integral and inserting the boundary values on S0 it is

(γ2 − γ2
0) = −

∮
S0

δ(x, y)ψ∗0
∂2ψ0
∂n2 dl

∫ |ψ0|2 da

and for the wavenumbers, k2 = µεω2 − γ2,

(k2 − k2
0) =

∮
S0

δ(x, y)ψ∗0
∂2ψ0
∂n2 dl

∫ |ψ0|2 da

Concerning the sign of the result, note that δ changes sign upon reversal on n̂, while ∂2ψ0
∂n2 does not. Our

result differs from the result stated in Jackson by a minus sign, again reflecting the fact the result stated in
Jackson assumes a normal vector n̂ pointing outward.



b): The depicted deformation δ(y) = δ y
b along the vertical sides and δ = 0 along the horizontal sides. The

depicted case corresponds to positive δ. The line integral only needs to be evaluated along the vertical sides.
We can use unnormalized mode functions.

TM11.

ψ0 = Ez = sin
(πx

a

)
sin

(πy

b

)

The normal derivative ∂ψ0
∂n on the vertical sides x = 0 and x = a is

∣∣∣∣
∂ψ0

∂n

∣∣∣∣ =
π

a
sin

(πy

b

)

The line integral

∮

S0

δ(x, y)
∣∣∣∣
∂ψ

∂n

∣∣∣∣
2

dl = 2
π2δ

a2b

∫
y sin2

(πy

b

)
dy =

π2δb

2a2

The area integral

∫
|ψ0|2 da =

1
4
ab

and

γ2 − γ2
0 = k2

0 − k2 =

∮
S0

δ(x, y)
∣∣∣∂ψ

∂n

∣∣∣
2

dl
∫ |ψ0|2 da

=
2π2δ

a3

Since k2
0 = µεω2 − π2

(
1
a2 + 1

b2

)
, the perturbed value of k2 is

k2 = k2
0 −

π2

a2

2δ

a
= µεω2 − π2

a2

(
1 +

2δ

a

)
− π2

b2

TE10.

ψ0 = Hz = cos
(πx

a

)

On the surfaces x = 0 and x = a, it is ψ∗0 = ±1 and ∂2ψ0
∂n2 = ∓π2

a2 (upper signs for x = 0, lower for x = a).

Thus,

∮

S0

δ(x, y)ψ∗0
∂2ψ0

∂n2
dl = −2

π2

a2

δ

b

∫ b

0

ydy = −π2bδ

a2



The area integral

∫
|ψ0|2 da =

1
2
ab

and

γ2 − γ2
0 = k2

0 − k2 = −
∮

S0
δ(x, y)ψ∗0

∂2ψ0
∂n2 dl

∫ |ψ0|2 da
=

2π2δ

a3

Since k2
0 = µεω2 − π2

a2 , the perturbed value of k2 is

k2 = k2
0 −

π2

a2

2δ

a
= µεω2 − π2

a2

(
1 +

2δ

a

)



3. Problem 8.13 10 Points

a):

Damping-induced mixing of TM-modes..

Ideal degenerate guide modes without damping and common eigenvalue γ2
0 :

(∇2
t + γ2

0)ψ(i)
0 = 0 and ψ

(i)
0 = 0 on S0

with i = 1, 2, ..N . For small damping, the mixed modes are well-defined linear superpositions of the degen-
erate ideal modes,

ψ =
N∑

i=1

aiψ
(i)
0

The objective is to find the coefficients ai. Since there are as many mixed modes as there are unperturbed
ones, there will be N independent mixed modes (characterized by independent sets of ai).

As shown in Sec. 8.6 of Jackson, the mixed modes are slightly altered due to the surface conductivity such
that they satisfy an equation with a perturbed boundary condition

(∇2
t + γ2)ψ = 0 and ψ = f

∂ψ

∂n
= f

∑

i

ai
∂ψ

(i)
0

∂n
on S0

where f = (1 + i)µcδ
2µ

ω2

ω2
0

with the unperturbed cutoff frequency ω0 = γ0√
εµ and the skin depth δ =

√
2

µcσω .

Using Green’s 2nd identity in two dimensions with n̂ pointing inward for ψ and ψ
(j)∗
0 then yields

∫
(ψ∇2

t ψ
(j)∗
0 − ψ

(j)∗
0 ∇2

t ψ)da =
∮

S0

(ψ(j)∗
0

∂ψ

∂n
− ψ

∂ψ
(j)∗
0

∂n
)dl

Inserting the above eigenvalue equations, the sum expression for ψ, the boundary values on S0, and using
the reality of the eigenvalues, it is

(γ2 − γ2
0)

N∑

i=1

ai

∫
ψ

(i)
0 ψ

(j)∗
0 da = −f

N∑

i=1

ai

∮
∂ψ

(i)
0

∂n

∂ψ
(j)∗
0

∂n
dl

Since by assumption an orthogonality condition

∫
ψ

(i)
0 ψ

(j)∗
0 da = Niδji

with norms Ni applies, the equation can be resorted into



N∑

i=1

[
Ni(γ2 − γ2

0)δji + ∆ji

]
ai = 0

with ∆ji = f
∮

S0

∂ψ
(i)
0

∂n

∂ψ
(j)∗
0

∂n dl. Q.e.d.

Mixing of TM-modes due to surface deformation.

The equations and perturbed boundary conditions for the mixed modes ψ are, as seen in Problem 8.12,

(∇2
t + γ2)ψ = 0 and ψ = −δ(x, y)

∂ψ

∂n
= −δ(x, y)

∑

i

ai
∂ψ

(i)
0

∂n
on S0

(n̂ pointing inward). Using Green’s 2nd identity in two dimensions with n̂ pointing inward for ψ and ψ
(j)∗
0

then yields

N∑

i=1

[
Ni(γ2 − γ2

0)δji + ∆ji

]
ai = 0

with ∆ji = − ∮
S0

δ(x, y)∂ψ
(i)
0

∂n

∂ψ
(j)∗
0

∂n dl. Q.e.d.

Note. Having n̂ point outward reverses the sign of δ; this produces the result given in the textbook.

Mixing of TE-modes due to surface deformation.

The equations and perturbed boundary conditions for the mixed modes ψ are, as seen in Problem 8.12,

(∇2
t + γ2)ψ = 0 and

∂ψ

∂n
= −δ(x, y)

∂2ψ0

∂n2
= −δ(x, y)

∑

i

ai
∂2ψ

(i)
0

∂n2
on S0

(n̂ pointing inward). Using Green’s 2nd identity in two dimensions with n̂ pointing inward for ψ and ψ
(j)∗
0

then yields

N∑

i=1

[
Ni(γ2 − γ2

0)δji + ∆ji

]
ai = 0

with ∆ji = +
∮

S0
δ(x, y)∂2ψ

(i)
0

∂n2 ψ
(j)∗
0 dl. Q.e.d.

Note. Having n̂ point outward reverses the sign of δ; this produces the result given in the textbook.



b): The given mode functions are orthogonal. We can set B0 = 1. The norm values are then both equal to

N : = N+ = N− = 2π

∫ R

ρ=0

ρJ2
1

(
x′11
R

ρ

)
dρ

= 2π


ρ2

2
J
′2
1

(
x′11
R

ρ

)
+

ρ2

2


1− 1

ρ2 x
′2
11

R2


 J2

1

(
x′11
R

ρ

)


R

0

= πR2J2
1 (x′11)

(
1− 1

x
′2
11

)

The surface deformation can be written as δ(φ) = ∆R cos(2φ). It is then seen that ∆++ = ∆−− = 0. Also,

∆+− = R∆R

∮

S0

cos(2φ)
∂2ψ

(−)
0

∂n2
ψ

(+)∗
0 dφ

where ∂2ψ
(−)
0

∂n2 =
(

x′11
R

)2

J
′′
1

(
x′11
R ρ

)
ρ=R

exp(−iφ) =
(

x′11
R

)2

J
′′
1 (x′11) exp(−iφ). Also, ∆+− = ∆−+. Thus,

∆ : = ∆+− = ∆−+ = R∆R

(
x′11
R

)2

J
′′
1 (x′11)J1(x′11)

∮

S0

exp(−2iφ) cos(2φ)dφ

= π
∆R

R
x
′2
11J1(x′11)J

′′
1 (x′11)

= π
∆R

R
x
′2
11J1(x′11)

[
J1(x)

(
1
x2
− 1

)
− J ′1(x)

1
x

]

x=x′11

= π
∆R

R
x
′2
11J

2
1 (x′11)

(
1

x
′2
11

− 1
)

The new eigenvalues γ2 are found by setting the determinant

∣∣∣∣
(

N(γ2 − γ2
0) ∆

∆ N(γ2 − γ2
0)

)∣∣∣∣ = 0

yielding

γ2 = γ2
0 ±

|∆|
|N | = γ2

0 ±
∆R

R

(
x′11
R

)2

= γ2
0(1± ∆R

R
)

Therefore, the parameter λ asked for in the problem is 1.

Eigenfunctions

From

(
N(γ2 − γ2

0) ∆
∆ N(γ2 − γ2

0)

)(
a+

a−

)
= 0



and (γ2 − γ2
0) = γ2

0
∆R
R it follows

a− = ∓γ2
0

∆R

R

N

∆
a+

With N
∆ = −γ−2

0
R

∆R we then find

a− = ±a+

where the upper sign corresponds to the larger perturbed value of γ2. The solutions satisfying the boundary
conditions on the deformed guide walls are:

ψ1 = H0J1

(
x′11
R

ρ

)
cosφ with γ2 = γ2

0(1 +
∆R

R
)

and
ψ2 = H0J1

(
x′11
R

ρ

)
sin φ with γ2 = γ2

0(1− ∆R

R
)

Interpretation. The electric field is transverse and found to be

E1,t = − iµωH0

γ2

[
φ̂γ0J

′
1 (γ0ρ) cos φ + ρ̂

1
ρ
J1 (γ0ρ) sin φ

]

and

E2,t = − iµωH0

γ2

[
φ̂γ0J

′
1 (γ0ρ) sin φ− ρ̂

1
ρ
J1 (γ0ρ) cos φ

]

Noting that γ2 ≈ γ2
0 , near the axis, where ρ ¿ R, the electric field reduces to

E1,t = −ŷ
iµωH0

2γ0

E2,t = x̂
iµωH0

2γ0

Thus, the mixed modes have transverse electric (and magnetic) fields that are aligned with the major and
minor axes of the ellipse present after deformation.

Note (unwarranted). For the adopted inward direction of the normal vector n̂ and for ∆R
R > 0 the

deformation is such that the guide becomes stretched in y- and squished in x-direction. Thus, the mode the
eigenvalue γ2 of which shifts upward (corresponding to downshifting k2 and upshifting guide wavelength)
has an electric field polarized parallel to the long axis of the deformation ellipse. The mode the eigenvalue



γ2 of which shifts downward has an electric field polarized transverse to the long axis of the deformation
ellipse.

Note. You recall that the direction of the normal vector n̂ played a role in the analysis. In the present
case, reversing the choice of the direction of n̂ reverses the sign of ∆R

R . As a result, the mixed modes 1 and
2 and the associated eigenvalues become swapped, ensuring that the physical results remain the same. The
number values for the perturbed eigenvalues must be independent of the direction of n̂, and the association
between the polarizations of the up- and downshifting modes and the orientation of the deformation ellipse
must be independent of the direction of n̂.



4. Problem 8.20 10 Points

a): TM-modes. The origin is chosen in the lower left corner, and we use the normalized ode functions
Eq. 8.135 and 8.136. For the current element, we use

J(x)d3x = I0dl = I0R

( − sinφ
cosφ

)
dφ

and

x =
(

R cos φ
h + R sin φ

)

There, R is the loop radius, h the height of the loop center, and −π/2 < φ < π/2. We assume, without loss
of generality, z = 0. Then, the normalized-mode amplitudes are

A±i = −Zi

2

∫
J(x) ·E∓i d3x

which for the TM-modes of the given rectangular guide and current yields

A±mn = −ZTM

2
2πI0R

γmn

√
ab

∫ π/2

−π/2

{
m

a
(− sin φ) cos

(
mπR cosφ

a

)
sin

(
nπ(h + R sin φ)

b

)

+
n

b
cos φ sin

(
mπR cos φ

a

)
cos

(
nπ(h + R sin φ)

b

)}
dφ

Noting that the integrands are total differentials,

A±mn = −ZTM

2
2πI0R

γmn

√
ab

∫ π/2

−π/2

{[
d

dφ
sin

(
mπR cos φ

a

)]
sin

(
nπ(h + R sin φ)

b

)

+
[

d

dφ
sin

(
nπ(h + R sin φ)

b

)]
sin

(
mπR cos φ

a

)}
1

πR
dφ

= −ZTM

2
2πI0R

γmn

√
ab

∫ π/2

−π/2

d

dφ

[
sin

(
mπR cos φ

a

)
sin

(
nπ(h + R sin φ)

b

)]
1

πR
dφ

= −ZTM

2
2πI0R

γmn

√
ab

1
πR

[
sin

(
mπR cos φ

a

)
sin

(
nπ(h + R sin φ)

b

)]π/2

−π/2

= 0

Interpretation. The wire loop couples to the longitudinal magnetic field, which is absent for TM-modes.
Thus, for the given geometry the TM excitation amplitudes vanish.

Note. The integrand can be expanded for the case R ¿ a, b. For TM-modes, the result also is A±mn = 0.



b): TE10-mode.

From Eq. 8.136 in Jackson and the subsequent comment it follows that the normalized fields are

Ez = 0

Ex = 0

Ey =
√

2π

γ01a
√

ab
sin

(πx

a

)

from which

A±E10 = −ZTE

2

√
2πI0R

γ10a
√

ab

∫ π/2

−π/2

∫ π/2

−π/2

sin
(

πR cos φ

a

)
cos φdφ

Use ZTE = µω/k and k =
√

ω2

c2 − γ2 and γ10 = π/a and
∫ π/2

−π/2
sin(x cos φ) cos φdφ = πJ1(x) to see

A±E10 = − µωI0Rπ√
ω2

c2 − π2

a2

√
2ab

J1

(
πR

a

)

c): Power in TE10-mode. It is, according to Eq. 8.136 and the subsequent comment,

ψ = Hz = A±E10Hz,E01 =
µωI0Rπ√

ω2

c2 − π2

a2

√
2ab

J1

(
πR

a

) √
2iγ01

kZTE

√
ab

cos
(πx

a

)

Use ZTE = µω/k and k =
√

ω2

c2 − γ2 and γ10 = π/a, and Eq. 8.51, P = const
∫ |ψ|2 da, to find the power

P =
I2
0R2Zπ2

4ab
J2

1

(
πR

a

)

For small argument J1(x) = x/2. Thus, for R ¿ a it is

P ≈ I2
0Z

16
a

b

(
πR

a

)4

Note. The result also follows from Eq. 8.133,

P =
1

2Zi
|Ai|2


