Instructor: Jianming Qian

Due date: March 7, 2002
Physics 506: Solutions to Assignment #6

Problem 10.15
From Prob. 8.2, the TEM fields in this case are
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In Kirchhoff approximation, the problem can be simplified as a plane wave incident on a conducting plane sheet with
a ring cut out of it. Therefore, the radiated field is given by Eq. (10.109):
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Let (6, ¢) be the spherical angles of k, ¢' be the polar angle of 7/, then
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Using the identities
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the integrals over ¢’ can be carried out:
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Noting that
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we get the electric field:

-, iekr v b, ) ' RN N
E(F) = o ln(b/a)k X /a dp'(—2mi)J1(kp' sin 0)(— sin ¢& + cos ¢f)

_£LEX$/bd,J ]{7’9
= 77 Tn(b/a) | dp ik sind)

_ ethr Yy i (ZASJO(kb sin @) — Jo(kasin0)
7 In(b/a) 2sind
Nowthatl%:fandthusI%quzfxqu—é
- e* vV Jo(kbsin) — Jo(kasin9) -
E(ir)y=—— 0
() r In(b/a) 2sind
The average Poynting vector
() = |E|2]% B V2 {Jo(kbsin®) — Jo(kasin0)}? k
272y 8ZyIn*(b/a) sin? ¢ 72
The average distributions of the radiation
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The distribution for kb = 4 and ka = 1 in the unit of V2/(8Z In? (b/a)) is plotted below. The horizontal axis is the
z—direction. As expected from the functional form, there is no radiation in the forward direction (¢ = 0). For large
b/a values, the distribution has many local maxima and minima as 6 is varied from 0 to 7/2.




The total power
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The integral does not have a simple analytical form and has to be carried out numerically.
Note to the grader: the following discussion should not be part of the grading

Long wavelength limit: (kb < 1)
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The total radiated power is then
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This is to be compared with the power flow along an infinite coaxial line:
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Therefore, most of the power is reflected back. The fields inside the coaxial cable is very similar to those of an "open”
transmission line. Note that in this case, the coaxial cable can only operate in its TEM mode. All other modes are
cut off.

Short wavelength limit: (ka>> 1)
The radiation can be appreciable and higher modes are excited. The fields in the plane at z = 0 are far from the
simple TEM fields. The Smythe-Kirchhoff approximation has only qualitative validity.

Problem 11.3
Let the frame K’ be moving with velocity v 2 with respect to K, and let K" be moving with velocity v22 with respect
to K'. Then,
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Thus two successive Lorentz transformations in the same direction are equivalent to a single Lorentz transformation
in that direction with velocity
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Problem 11.5
Begins with Eq. (11.31):
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