Instructor: Jianming Qian

Due date: February 14, 2002
Physics 506: Solutions to Assignment #5

Problem 10.3
(a) Since A > R, the fields are essentially constant over the size of the sphere. Furthermore the sphere can be treated
as a perfectly conducting sphere since § < R. Therefore, to the 0** order, the problem can be approximated as a

perfect conducting sphere in a static field. Thus the tangential component of the electric field vanishes (EH =0). To
apply considerations of Sec. 8.1 to the power absorbed, we need to know the tangential component of the magnetic

field H, |- Consequently we need to solve the magnetostatic problem in field H = Hye of the plane wave. Note that
we can always project the field of an unpolarized beam into two independent polarizations. In spherical coordinates

with H pointing to the +z axis, the magnetic scalar potential has the form:
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Here we have chosen the center-of-sphere as the coordinate origin. The first term is due to the uniform external field
while the second term is due to the included magnetic dipole moment 7 of the sphere. Note that /m and H are in the

same direction. Thus, the components of the magnetic field H=—-V®,; are:
6(I)M m
H, = 5 = Hycos@ - 53 cos 0
Hy = T = —Hysinf + g sin 0

and Hy = 0. For a perfect conductor, H, =0 on the surface. Then,

H(r=R)=IHycos0+ —" cos0=0 = m=-2rRH, = m=-2rRH,
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The 0** order magnetic field on the surface is thus
3 .
HH = Hg = —§H0 sin 6
(b) Since 0 < R, the power absorbed per unit area of surface is given by FEq. (8.15):
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The total power absorbed is
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Now note that the incident flux
o 1 - - Zo, = 1
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the absorption cross section is
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Therefore 0,15 is proportional to /w if the conductivity o is independent of frequency.

Problem 10.9(a)
Useful integral
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Starting with the ‘Born’ approximation formula Eq. (10.31)
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Define
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The differential scattering cross section, averaged over initial polarizations and summed over final polarizations, is

d
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where the summation is over initial and final state polarizations:
—ZlG* &% = 1+cos 9)
pol.
Now note

0 = K|y — 71|? = k(2 — 27y - 1) = 2k*(1 — cos 0)

For large ka > 1, ga = ka+/2(1 — cos ) can be large compared to unity. Since
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for large qa, the scattering is mainly confined to small ga. Small ga and ka > 1 imply 0 < 1, i.e. the differential
cross section is sharply peaked in the forward direction.
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Let z = ga, then
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The total scattering cross section can be written
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Since § < 1, (1 +cos?0)/2 — 1 and (¢@)max = 2max — 00, then
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Problem 10.12
(a) The diffracted field due to a plane surface is given by FEq. (10.101):
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Here 7 is a unit normal. In radiation zone, |¥— /| & r — 7 - /. Thus
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Choose a rectangular coordinate system with the  — 2z plane as the plane of incidence and its origin at the center of
the aperture, thus 7 = 2 and the incident wave vector kg = k(cos a2 + sinaz). Let (0, ¢) be the spherical angles of
the outgoing wave vector k and (p', 8’,0) be the polar coordinates of 7/, thus

k = k(sin 0 cos ¢@ + sin @sin ¢f + cos02), 11 = p' cos 3 + psin §'9
Consequently
korl = kp'sin 0(cos ¢ cos B’ +sin¢sin 3') = ksin p’ cos(¢ — '), and ko -7 = ksina p'cos 3
Therefore, the field
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Now note the exponent of the integrand
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= —{(sinf cos ¢ — sin &) cos 5 + (sin Osin ¢) sin 5}
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Here
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Applying the integral
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we get the electric field
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The average Poynting vector
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Note that |lg x &2 = kz(sin2 0 sin? ¢ + cos? ). The time-averaged diffracted power per unit solid angle
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The explicit dependence on ¢ of the differential power is the result of the polarization of the incoming wave. Now
that the incident power F;:

YA

2 2
Ta“ cos &

P = l(Exlef*)ﬁd@’—”—“2|E|2 a = |E*=
i= /3 oda’ = 57~ 1Fol” cos ol =

Thus
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(b) For the polarization in the plane of incidence, the differential diffractive power is given by Fq. (10.114):
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For normal incidence (o = 0), the L case with ¢ = 0 and || case with ¢ = 7/2 should be identical. Indeed the two
formula are indeed the same. Furthermore for a@ = 0, the diffractive power for an unpolarized beam is
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As expected, the diffraction pattern of an unpolarized beam is independent of the azimuthal angle and is determined
by the function .Ji(x)/z, which is plotted below.
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The vector results above are very similar to

dP P (ka)? (cosa + cos 9)2|2J1(ka£) |2
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of the scalar Kirchhofl approximation apart from the angular factor resulting from polarization.

Problem 10.18
(a) In the long wavelength limit, the small circular hole can be viewed as electric and magnetic dipoles with moments
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Therefore, the diffracted electric field in the Fraunhofer zone is given by Eq. (10.2):
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where 77 = lg/k Inserting the effective dipole moments, we have
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With explicit time-dependence, the field can be written as
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(b) Choose a coordinate system such that Eo is along the z—axis, Eo is along the x—axis and let k= k(Zsin@cos ¢+
§sinfsin ¢ + Z cos ), the time-averaged radiation power per unit solid angle is
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Note that
|2¢7t x By + 7 x (Eo x @1)|? = |2¢7i x By + Ey — (i - Ey)i|?
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Thus, the differential power
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The total power transmitted
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