Instructor: Jianming Qian

Due date: April 16, 2002

Physics 506: Solutions to Assignment #11

Problem 14.14
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Plugging into the result of Prob. (14.13):
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where Gy = awp/c.
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Let ¢’ = m — ¢ and using the identity
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Consequently, we get
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Here we have used a Bessel identity:
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Therefore, the average power for the m** harmonics:
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Here we used Gy = wopa/c instead of 8 to avoid confusions.
(b) The total power radiated in the m!* harmonic is
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In the non-relativistic limit, 89 < 1, the contribution from large m will be negligible since
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The radiation is dominated by m = 1 harmonic:
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Problem 14.26
(a) The radius of the orbit can be calculated using the numerical form Eq. (12.42):
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The natural frequency of the motion
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(b) The average observable power is given by
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At low frequencies (w < we), dI /dw is given by Eq. (14.89). Therefore the average power spectrum has the form
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At high frequencies (w > w.), dI/dw is given by Eq. (14.90). Thus
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The average power

W

P(w,B) ~ (15) P forw < w.  and  P(w,B) ~ (%)I/Qe*w/wc for w > w,

It can be written in the form
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where f(z) =1 for x < 1 and f(z) ~ 2"/5e for x> 1.
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Approximate | as a step function such that f(z) = 1 for # < 1 and f(z) = 0 for z > 1. Given that w, ~ E? = §F?
(here ¢ is a constant, see below), the non-vanishing contribution to the integral is therefore from F > (/w/é.
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where oo = (n—1)/2.

(d) The critical frequency w, of the radiation is related to electron energies through
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Taking the cutoff frequency 10'® Hz as the critical frequency and note that e/me = 1.76 x 107 s~ ! gauss !, we have
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consistent with the electron energy (and therefore all other numbers) of part (a). In this frequency region, we have
n=2a+1=170.
(e) The half-life is given by
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Therefore, the half-life can be expressed in terms of B in milli-gauss and F in GeV as
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For the numbers in part (a),
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The Crab nebula was observed in year 1054, more than 900 years ago. Therefore, initial energetic electrons are
probably long gone. However, my astrophysics colleagues told me that there is not much trouble making energetic
electrons from the pulsar at the center. Electrons and positrons can be pair produced from the energetic photons
from the pulsar and they are accelerated by the rapidly rotating magnetic field associated with the neutron star. It
is interesting to note that earlier editions of Jackson had F = 102 eV and B = 10~* gauss, which results a half-life
about 834 years. Presumably the change is due to recent progresses made in this area.

=2.92 x 10® s ~ 9.3 years

Problem 13.1

(a) Let ¥ = vZ be the velocity of the incident particle (of mass M). Since electron is much light (m < M), ¥ is also
the velocity of the center-of-mass frame. In this frame, the electron moves at a velocity —t" before the scattering and
therefore its 4-momentum is given by P&,, = (yme; —ymwv,0,0). After the scattering, the electron energy remains
the same, but the momentum is deflected by a scattering angle 6. Thus, the 4-momentum after the scattering is
P(];M = (yme; —ymu cosf,ymusin 6,0), here we have chosen the  — y plane as the scattering plane. The invariant
4-momentum transfer squared is
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(6P)? can also be calculated in the laboratory frame. In this regard, the electron 4-momenta before and after the
scattering are given respectively by

i - B
Prag = (me; 0); P£AB = (?ﬁ)

where I/ and p are electron’s energy and momentum after the scattering. The 4-momentum transfer squared calculated
using the laboratory variables is
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Equating the two 4-momentum transfer squared, we get the energy transfer
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where by, = 2€2 / 'ymvz. Thus the energy transfer is
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(b) The transverse electric field is
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Withe the exception of the cutoff b,,;, in the exact classical calculation, the two results are the same. Note that the
energy transfer diverges without the cutoff b,,;,. This is because the two particles can get infinitely close to each
other with the assumption we made in (b). In practice, this cannot be the case.

Problem 13.11

Fields of a magnetic monopole g are the same as for a charge ¢, with the exchanges E— B), B — —F and q—g.
For a magnetic particle moving in the x direction, there is only an electric field in the z direction (if the observation
point is on the y—axis). Following Eqgs. (11.152) we have,
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Since a magnetic field does no work and therefore does not cause energy transfer, the energy loss is mainly caused

by the action of the electric field of the passing particle on the atomic electrons. The momentum transfer can be
calculated in exactly the same way as in Prob. 13.1(b) with the following replacement for the electric field:
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Therefore, the momentum and energy transfer can be obtained with the replacement ze — (Gg:
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Since the limits on by and by, are essentially the same, having to do with the electrons binding frequency and the
electron’s Compton wavelength, the whole calculation proceeds as before. The Bethe formula thus has the following
analog for energy loss by a magnetic monopole:
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We have omitted the v? / ¢? term, because its presence in the monopole situation is not clear. It comes in part from
close collisions of the electrons with nuclei and involves the electron’s spin. Evidently, the loss is linear in In(y3). At
high energies, the dF/dx energy loss by a monopole is identical to that of a charged particle. The difference is at low
energies where df//dx is more or less flat for monoples. However it should be noted that the formula above is not
valid for an extremely slow monopole.

(b) Dirac quantization condition is
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Thus the losses in the two cases can be written as
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For 3 ~ 1, the charged particle will lose energy at the same rate as a monopole provided z = 137n/2. For n = 1,
z = 68.5. For n = 2, 2 = 137. A Dirac monopole is thus expected to ionize and lose energy like a relativistic heavy
nucleus. At low energies, the log-term In(2mc? /h{w)) dominates and therefore the loss is more or less constant.



