Instructor: Jianming Qian

Due date: January 31, 2002

Physics 506: Solutions to Assignment #3

Problem 9.1

Note that part (a) is merely the statement that the Fourier decomposition of the multipole moments gives the same
result as the multipole expansion of the Fourier decomposed charge distribution, i.e., it does not matter whether you
expand first and then decompose or decompose first and then expand. This is obvious since the two integrations
commute.

(b) Let T be the period and wg be the characteristic frequency, thus:

p(7,1) = p(7, 1 +T)

Therefore,
T T 1 oo ' -
p(T,t :/ pf’,t’ét—t’ dt,:/ pf”t’ - o —inwo (t— dt'
(7,1) ; (m )0t —t) ; (7,1 Tn;oo
Sl By o
B ’n;oo eilnthT/O p(F7 t,)elnth dt,
1 T e o] ) 1 T ] , ' 1 T ' /
= — p F,t, dt’—)— efznwot_/ p 7;»’ t/ eznwot dt’—)—elnwot—/ p 7;»’ t/ e*lnwot dt/
LN R L[ ey
)+ S5 2R e )
n=1
Here

1 [T o
pu(P) = = / p(F,t)em et !
T Jo

Note that p(7,1) is assumed to be real.
(¢) To facilitate the calculation of multipole moments later, we can write the charge distribution in spherical coordi-
nates as

p(7)t) = %5@ — R)d(cos 0)5(¢ — wot)

Therefore
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The £ = 0,1 multiple moments using method (a) (before the Fourier decomposition) are:
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Summarizing the £ = 1 moments, the electric dipole moment is
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The multipole moments using method (b) (after the Fourier transformation) are:
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Here we have used the following two integrals:
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Therefore, the two calculations agree with each other. There are high order multipole moments:
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Now note
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Thus

Qem ~ qRZéé,\m\eimth
Thus multipole moments gg,, is nonvanishing for m = £ or m = —¢ with a frequency dependence of w = fwy.

Problem 9.2
Let the rotational axis be the z—axis and the coordinate origin at the center of the square, properly choose ¢t = 0 such
that ¢ = wt for one of the +¢q charge. In this case, the charge distribution is given by

p(7,t) = g6 (2) {5@; - % coswt)d(y — % sinwt) — 8z + % cos wt)d(y — % sin wt)
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The quadrupole moments
Now that

/a:zp(f', t)dr = qa® cos(2uwt), /yzp(f', t)dr = —qa® cos(2wt), /zzp(f’, t)dr =0
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Therefore,
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All other ();;'s vanish. Therefore, the quadrupole moment tensor is (with the understanding of e’i(z“’t)):
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Evidently, the frequency of the radiation is 2w as expected from the periodicity of the charge distribution p(7, t+17/2) =
p(7,t), here T is the rotation period. Thus k = 2w/c. The electric dipole moment vanishes for this configuration (two
equal dipoles antiparallel to each other). The magnetic dipole moment also vanishes since the rotating square with
net zero charge has zero net current flowing. Thus the radiation is dominated by the electric quadrupole. In the long
wavelength limit, the radiation magnetic field is given by Eq. (9.44):
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Therefore, the magnetic field
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and the electric field is given by
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The angular distribution of the radiation is given by Eq. (9.45):
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Total power of radiation
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Problem 9.3
In the long wavelength limit, we can calculate the multipole moments from the static problem and keep only the
lowest non-vanishing multipoles. From Fq. (3.36), the corresponding potential outside the shell is

&(r,0) =V {g(g)zpl(cos 0) — £(§)4P3(COS 0) + }

The potential is dominated by the dipole term. Compared with the potential of an electric dipole p

B(r,0) = 1 pcosb
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we infer the dipole moment of the sphere to be:
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Thus, the radiation fields are given by Eq. (9.19):
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The radiation power per unit solid angle
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Added note
There are charges and currents on the sphere. But the magnetic dipole moment vanishes. From the scalar potential,
we can calculate the surface charge distribution

o® eV

0(9) = GOE’IL|’I“:R = _608_n|r:R = R cos 6

Therefore, the surface current density K = Kb (by symmetry, the current only flows in the € direction) can be
calculated from the continuity equation:
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The magnetic dipole moment
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For the charge distribution of a dipole potential, all elements of the electric quadrupole moment tensors are zero.

Q11 = Q22 = /(3362 — Rz)adecos Ode ~ /sin2 0 cos 9dc089/c082 pdp=0 = Q33=0
Qiz2=Q2n = /(3xy)0R2dcos Odg ~ /sinzﬁcos 9dc089/sin¢cos odep =0

Q13 =031 = Q23 =Q3z = /(3xz)0R2dcos 0deg ~ /sin@cos2 9dc089/cos odep =0

Problem 9.10

(b) The charge distribution given is not the one in usual sense since the total charge is nonvanishing and oscillating
with time, against the teaching that the radiation does not having a monopole term. I guess that is why Jackson
called it ”transitional charge”. Note that in a spherical coordinate system

z=1rcosf = 1/4%7“5/10

Therefore, the charge distribution can be written
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Therefore, the electric dipole moment only has non-vanishing contribution in the z— direction.

= \/—6 4 —3r/2a0 \/ie 4! 28\/§
Pz :/zp(?“,t)dT— W/ e %/ dT/dQYwYm = 3@3 (3/2&0)5 = 35 €ao




Here we have used the orthogonality condition of the spherical harmonics and

!
> _ n!
e Ydr = ——
0 an+1

The average power is given by Eq. (9.24):
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(c) Let N (2p — 1s) be the transition probability (this Jackson’s probability is not the probability in usual sense, it
is really the number of atoms making the transition from 2p — 2s per unit time to yield the calculated power):
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(d) Let the orbit plane be the # — y plane, the electric dipole moment of the electron can be written as
P = e(a +yJ) = 2eaq {cos(wot)® + sin(wot )} = 2eaqRe { (& + if)e '}
Or in complex form
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