1 Problem 12.7

1.1 Part a

We know that the E field from the particle is:
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If we let ¥ = 7 — 77, this becomes:
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Plugging this and B = — B2 into Jackson’s equation 12.106:
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By antisymmetry in y, we see that the z-component must be zero. Expresssing the y-
component in polar coordinats in the y'-z’ plane— that is, p = /y? + /%
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Evaluating this integral in Maple for the three regions yields:
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The conjugate momentum of the particle comes from Jackson’s equation 12.14:
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Because Vx A = B and B = —BzZ, A= —xBy. At x = x, ﬁparﬁcle becomes:
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Summing FPreiq and Pparticle gives G
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Note that our answer is not gauge invariant. The A we chose is not the only choice in gauge

which yields B = —B2. Because our answer depends on this choice in gauge, it is not gauge
invariant.
1.2 Part b
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Solving this for r and plugging it into the y-component of equation (1) yields:
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where we’ve used the fact that sinf = a/r, where 6 is the deflection angle. We've also
used the fact that A is constant in the region x > a, which is why we’re able to make the
substitution xg = a in the last step.

Note that we set up the system such that the canonical momentum of the particle in the
y-direction was initially zero. Thus, the canonical momentum in the y-direction is conserved.
However, the mechanical momentum is not conserved— initially, the mechanical momentum
was zero, but it grows to qaB/c after exiting the magnetic field.

The momentum of the electromagnetic field will not be conserved, either, by conservation of

G.

1.3 Part c

In this case, the particle is trapped in the region where the field exists because the particle
will continuously revolve around within the field since it doesn’t have enough momentum



to leave. So, we should pick a symmetric gauge. We note that a symmetric A exists which
gives B = —BZ%
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Following the same arguments we did in the previous part with this new value of A yields:
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By conservation of canonical momentum, canonical momentum of the particle in the y-
direction was initially zero (as was the case in the previous part). Because our choice in A is
now symmetric, we aren’t seeing the mechanical momentum growing, but it’s now conserved
as well.

Finally, the momentum of the electromagnetic field is also conserved by conservation of G.

2 Problem 12.9 (part a only)

Substituting n = 7 into equation 5.56 (remembering to convert to Jackson’s new choice of
units for this half of the book):
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We know that the line element d5s is:
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Along a line of differential force, d§ is parallel to B. Hence,
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where © = sin 0.

r = rosin? 6

Plugging this into equation (2) yields:
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3 Problem 12.10

Substituting equation (3) into Jackson’s equation 12.72 yields (at time ¢ = 0):
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When the particle reaches latitude A, it will be at a turning point— hence, v = 0:
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Finally, we note that equation (2) yields B = M/r3 at # = w/2. Substituting this value for
By into the above equation and solving for « yields:
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From problem 9, we know that r = r¢sin? 0. In terms of R, Ry, and )\, this is Ry = R cos® a.

Hence,
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A plot of A vs. a with the values of & marked for R/Ry = 1.2,1.5,2.0,2.5, 3, 4,5 was generated
using the following Matlab code:

lambda = 0:0.01:pi/2;

alpha = atan(sqrt(sqrt(3*sin(lambda)."2 + 1)./cos(lambda)."6 - 1));

RRO = [1.2, 1.5, 2.0, 2.5, 3, 4, 5];

lambda_RRO = asec(RRO);

alpha_RRO = atan(sqrt(sqrt(3*sin(lambda_RRO)."2 + 1)./cos(lambda_RRO)."6 - 1));

plot(alpha,lambda, ’b’,alpha_RRO,lambda_RRO,’rx’);

The resulting lot is shown below.
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4 Problem 12.14

4.1 Part a
Using Jackson’s equation 11.73 (2% = gas2”):
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Thus, using the following for our Lagrangian density:
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oL oL
Ja =

0(0°AB) ~ 9Ao

@«wimﬁ>:—bb
&

4
4
mmﬂ—%h
4
00, Ay = — Jj (4)

4
m@%—@m%:gﬁ

This reduces to equation (4) when . This is the condition for which the above
Euler-Lagrange equation reduces to the Maxwell equations.

6



4.2 Part b

Taking the difference between the Lagrangian density we were given in this problem and
equation 12.85 yields:
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Using the product rule, we know that:
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Using the Lorentz condition that 93 A%, 95 (AaaaAﬁ) = 05A,0%AP. Substituting this into
equation (5) yields:
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Thus, the difference between the Lagrangian densities is equal to a 4-divergence.

From equation 12.84, we know that the action is:
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Thus, the difference in the actions between these two Lagrangian densities is:
AA = /8[3 (A 0%Ag) d*x

Because the integral over all space of a divergence is zero, the action is unaffected.
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