
Physics 505 Fall 2007

Midterm — Solutions

This midterm is a two hour open book, open notes exam. Do all three problems.

[30 pts] 1. Consider a two-dimensional problem defined in the region between concentric circles
of radii a and b.

b
a

[10] a) Using polar coordinates, the Dirichlet Green’s function may be expanded as

G(ρ, φ; ρ′, φ′) =
∞∑

m=−∞
gm(ρ, ρ′)eim(φ−φ′)

Write down the appropriate differential equation for gm(ρ, ρ′).

In two dimensions, the Green’s function satisfies

∇′2G(~x, ~x ′) = −4πδ(2)(~x− ~x ′)

Using polar coordinates, we note that

∇′2 =
1
ρ′

∂

∂ρ′
ρ′

∂

∂ρ′
+

1
ρ′2

∂2

∂φ′2

and
δ(2)(~x− ~x ′) =

1
ρ
δ(ρ− ρ′)δ(φ− φ′)

As a result, we have(
1
ρ′

∂

∂ρ′
ρ′

∂

∂ρ′
+

1
ρ′2

∂2

∂φ′2

)
G(ρ, φ; ρ′, φ′) = −4π

ρ
δ(ρ− ρ′)δ(φ− φ′)

= −
∑
m

2
ρ
δ(ρ− ρ′)eim(φ−φ′)

where we have used the completeness relation∑
m

eim(φ−φ′) = 2πδ(φ− φ′)



Inserting the expansion

G(ρ, φ; ρ′, φ′) =
∑
m

gm(ρ, ρ′)eim(φ−φ′)

into the above and matching powers of ei(φ−φ
′) then gives the differential equation(

1
ρ′

∂

∂ρ′
ρ′

∂

∂ρ′
− m2

ρ′2

)
gm(ρ, ρ′) = −2

ρ
δ(ρ− ρ′) (1)

[20] b) Solve the Green’s function equation for gm(ρ, ρ′) subject to Dirichlet boundary
conditions and write down the result for G(ρ, φ; ρ′, φ′). Note that the m = 0 case
may need to be treated separately.

We start with the m 6= 0 case. The homogeneous equation corresponding to the
Green’s function equation (1) is(

1
ρ′

∂

∂ρ′
ρ′

∂

∂ρ′
− m2

ρ′2

)
gm(ρ, ρ′) = 0

This is easy to solve as it is equidimensional in ρ′. The two independent solutions
are of the form ρ′m and ρ′−m. Because of the delta-function source in (1), we
break up the ρ′ interval into a ≤ ρ′ ≤ ρ and ρ ≤ ρ′ ≤ b. Hence we write

gm(ρ, ρ′) =
{
Au(ρ′) a ≤ ρ′ ≤ ρ
Bv(ρ′) ρ ≤ ρ′ ≤ b

where

u(ρ′) =
(
ρ′

a

)m
−
(
a

ρ′

)m
, v(ρ′) =

(
ρ′

b

)m
−
(
b

ρ′

)m
(2)

are appropriately chosen to satisfy the Dirichlet boundary conditions gm(ρ, a) = 0
and gm(ρ, b) = 0. Note that these expressions are valid for both positive and
negative m. From (1), we must now satisfy the matching and jump conditions

g< = g>,
∂

∂ρ′
g< =

∂

∂ρ′
g> +

2
ρ

(3)

where g< and g> are the values of gm(ρ, ρ′) for ρ′ immediately to the left and
right of the delta function at ρ, respectively. These conditions give rise to a set
of two equations which may be solved to determine the two unknowns A and B.
Alternatively, by symmetry of the Green’s function, we may write

gm(ρ, ρ′) = Au(ρ<)v(ρ>)

where ρ< = min(ρ, ρ′) and ρ> = max(ρ, ρ′), and whereA is a ρ and ρ′ independent
constant. In this case, the first condition of (3) is automatically satisfied, while
the second one gives

Au′(ρ)v(ρ) = Au(ρ)v′(ρ) +
2
ρ



or equivalently

A = −2
ρ

∣∣∣∣ u(ρ) v(ρ)
u′(ρ) v′(ρ)

∣∣∣∣−1

Note that the determinant is simply the Wronskian of u(ρ) and v(ρ). In any case,
using (2), we see that∣∣∣∣ u(ρ) v(ρ)

u′(ρ) v′(ρ)

∣∣∣∣ =
m

ρ

[((ρ
a

)m
−
(a
ρ

)m)((ρ
b

)m
+
( b
ρ

)m)
−
((ρ

a

)m
+
(a
ρ

)m)((ρ
b

)m
−
( b
ρ

)m)]
=

2m
ρ

[( b
a

)m
−
(a
b

)m]
This gives

A = − 1
m

[( b
a

)m
−
(a
b

)m]−1

so that

gm(ρ, ρ′) = − u(ρ<)v(ρ>)
m[(b/a)m − (a/b)m]

(m 6= 0) (4)

where u(ρ) and v(ρ) are given in (2).

When m = 0, the Green’s function equation (1) reduces to

1
ρ′

∂

∂ρ′
ρ′

∂

∂ρ′
g0(ρ, ρ′) = −2

ρ
δ(ρ− ρ′)

In this case, the two linearly independent solutions to the homogeneous equation
are 1 (ie a constant) and log ρ′. The Dirichlet boundary conditions are then
satisfied with

u(ρ′) = log
(
ρ′

a

)
, v(ρ′) = log

(
ρ′

b

)
This time, the Wronskian is∣∣∣∣ u(ρ) v(ρ)

u′(ρ) v′(ρ)

∣∣∣∣ =
1
ρ

[
log
(ρ
a

)
− log

(ρ
b

)]
=

1
ρ

log
(
b

a

)
so that

A = −2
ρ

∣∣∣∣ u(ρ) v(ρ)
u′(ρ) v′(ρ)

∣∣∣∣−1

= − 2
log(b/a)

and

g0(ρ, ρ′) = −2 log(ρ</a) log(ρ>/b)
log(b/a)

(5)



Finally, combining (4) and (5) gives the complete Green’s function

G(ρ, φ; ρ′, φ′) =− 2 log(ρ</a) log(ρ>/b)
log(b/a)

−
∑
m 6=0

[(ρ</a)m − (a/ρ<)m][(ρ>/b)m − (b/ρ>)m]
m[(b/a)m − (a/b)m]

eim(φ−φ′)

Since the prefactor to eim(φ−φ′) is even under the replacement m → −m, the
Green’s function may equivalently be written as

G(ρ, φ; ρ′, φ′) =
2 log(ρ</a) log(b/ρ>)

log(b/a)

+
∞∑
m=1

2[(ρ</a)m − (a/ρ<)m][(b/ρ>)m − (ρ>/b)m]
m[(b/a)m − (a/b)m]

cos[m(φ− φ′)]

or

G(ρ, φ; ρ′, φ′) =
2 log(ρ</a) log(b/ρ>)

log(b/a)

+
∞∑
m=1

2
m

(
ρ<
ρ>

)m [1− (a/ρ<)2m][1− (ρ>/b)2m]
[1− (a/b)2m]

cos[m(φ− φ′)]

[35 pts] 2. A spherical surface of radius a and surface-charge density σ(θ) = σ0+σ1 cos θ is placed
concentrically inside a grounded conducting sphere of radius b. Here θ is the standard
polar angle in spherical coordinates.

σ(θ) = σ0 + σ1 cos θ

[20] a) Find the potential Φ(r, θ, φ) everywhere inside the conducting sphere.

Since this problem focuses on the interior of a conducting sphere of radius b, we
may use the Dirichlet Green’s function

G(~x, ~x ′) =
∑
l,m

4π
2l + 1

rl<

(
1
rl+1
>

−
rl>
b2l+1

)
Y ml (Ω)Y m ∗l (Ω′) (6)



In general, the potential inside the conducting sphere is given by

Φ(~x ) =
1

4πε0

∫
V

G(~x, ~x ′)ρ(~x ′)d3x′ − 1
4π

∫
S

Φ(~x ′)
∂G

∂n′
da′

However the surface term does not contribute since the potential Φ(~x ′) vanishes
on the surface of the grounded conducting sphere. As a result, we are left to
evaluate

Φ(~x ) =
1

4πε0

∫
V

G(~x, ~x ′)ρ(~x ′)d3x′

where
ρ(~x ′) = σ(θ′)δ(r′ − a) = [σ0 + σ1 cos θ′]δ(r′ − a)

Using the Green’s function of (6) and using the δ(r′ − a) to kill the r′ integral
gives

Φ(~x ) =
1

4πε0

∑
l,m

4π
2l + 1

rl<

(
1
rl+1
>

−
rl>
b2l+1

)
Y ml (Ω)

∫
σ(θ′)Y m ∗l (Ω′)a2dΩ′

where r< = min(r, a) and r> = max(r, a). Since the charge distribution σ(θ′) is
azimuthally symmetric, only the m = 0 terms survive in the sum, and we are left
with a Legendre polynomial series

Φ(r, θ) =
2πa2

4πε0

∑
l

rl<

(
1
rl+1
>

−
rl>
b2l+1

)
Pl(cos θ)

∫ 1

−1

σ(θ′)Pl(cos θ′)d(cos θ′)

We now use
σ(θ′) = σ0P0(cos θ′) + σ1P1(cos θ′)

and the orthogonality of Legendre polynomials∫ 1

−1

Pl(x)Pl′(x)dx =
2

2l + 1
δl,l′

to obtain

Φ(r, θ) =
a2

ε0

∑
l

rl<

(
1
rl+1
>

−
rl>
b2l+1

)
Pl(cos θ)

[
σ0δl,0 +

1
3
σ1δl,1

]
=
a2

ε0

[
σ0

(
1
r>
− 1
b

)
+

1
3
σ1r<

(
1
r2
>

− r>
b3

)
cos θ

]
Explicitly, this gives

Φ(r, θ) =


a2

ε0

[
σ0

(
1
a
− 1
b

)
+

1
3
σ1r

(
1
a2
− a

b3

)
cos θ

]
r < a

a2

ε0

[
σ0

(
1
r
− 1
b

)
+

1
3
σ1a

(
1
r2
− r

b3

)
cos θ

]
r > a

(7)



An alternate means of solving this problem is to solve Laplace’s equation sepa-
rately for r < a and for a < r < b, and to match the two solutions at the location
of the charged surface, r = a. Taking boundary conditions into account, we may
write

Φ< =
∑
l

αlr
lPl(cos θ) (r < a)

Φ> =
∑
l

βl

(
1
rl+1

− rl

b2l+1

)
Pl(cos θ) (a < r < b)

(8)

where these forms have been chosen to satisfy the boundary conditions at r = 0
and r = b, respectively. The matching conditions at the surface r = a are that
the potential is continuous, Φ< = Φ>

∣∣
r=a

and that the jump in the perpendicular
component of the electric field is given by σ/ε0, namely E>r = E<r + σ/ε0

∣∣
r=a

or
∂Φ</∂r = ∂Φ>/∂r + σ/ε0

∣∣
r=a

. These two conditions lead to the simultaneous
equations

αla
2l+1 − βl

(
1− (a/b)2l+1

)
= 0

lαla
2l+1 + βl

(
(l + 1) + l(a/b)2l+1

)
= σla

l+2/ε0

which may be written in matrix form(
1 −1 + (a/b)2l+1

l l + 1 + l(a/b)2l+1

)(
αla

2l+1

βl

)
=
(

0
σla

l+2/ε0

)
This may be solved to give(

αla
2l+1

βl

)
=

1
2l + 1

(
l + 1 + l(a/b)2l+1 1− (a/b)2l+1

−l 1

)(
0

σla
l+2/ε0

)
=

σla
l+2

(2l + 1)ε0

(
1− (a/b)2l+1

1

)
In particular

α0 =
σ0a

ε0

(
1− a

b

)
, α1 =

σ1

3ε0

(
1−

(a
b

)3
)

and

β0 =
σ0a

2

ε0
, β1 =

σ1a
3

3ε0
Substituting these coefficients into (8) reproduces the potential (7) obtained above
using the Green’s function method.

[10] b) What is the induced surface-charge density on the interior surface of the conduct-
ing sphere?

The induced surface-charge density is given by

σ = −ε0Er
∣∣∣
r=b

= ε0
∂Φ
∂r

∣∣∣∣
r=b



Using the expression for Φ(r > a) obtained in (7), we see that

σ = a2 ∂

∂r

[
σ0

(
1
r
− 1
b

)
+

1
3
σ1a

(
1
r2
− r

b

3
)

cos θ
]
r=b

= −
[
σ0

(a
b

)2

+ σ1

(a
b

)3

cos θ
] (9)

[5] c) What is the total induced charge on the interior surface of the conducting sphere?

The total induced charge is obtained by integrating (9) over the area of the
conducting sphere

Qinduced =
∫
r=b

σ da = −σ0

(a
b

)2

(4πb2) = −4πa2σ0

Note that the dipole term proportional to σ1 integrates to zero over the entire
surface of the sphere. This is just the negative of the total charge of the surface
at r = a

q = (average surface charge density)× (area) = σ0(4πa2)

Even without knowning the result of part b, this can be obtained directly by
elementary application of Gauss’ law inside a hollow conductor.

[35 pts] 3. A solid (ungrounded) conducting sphere of radius a and charge −2q is located at the
origin. A point charge of +q is placed above the conducting sphere at a distance L
from the origin, and another one (also of charge +q) is placed at a distance L below
the origin.

L

−2q

+q

+q

L

[15] a) Find the potential Φ(~x ) everywhere outside the conducting sphere. (Take Φ = 0
at infinity.)

Perhaps the most straightforward way to approach this problem is to use the
method of images. The image charge corresponding to the +q charge located at



a distance L from the center is −q(a/L), and its location is a2/L from the center.
If the conducting sphere is grounded, the potential is then

Φgrounded =
q

4πε0

[
1

|~x− Lẑ|
+

1
|~x+ Lẑ|

− a/L

|~x− (a2/L)ẑ|
− a/L

|~x+ (a2/L)ẑ|

]
However, the conducting sphere is actually ungrounded, and has a total charge
−2q on it. Taking into account the two image changes, the effective charge on
the sphere is qeff = −2q + 2q(a/L). Hence the potential is

Φ =
q

4πε0

[
−2 + 2a/L
|~x |

+
1

|~x− Lẑ|
+

1
|~x+ Lẑ|

− a/L

|~x− (a2/L)ẑ|
− a/L

|~x+ (a2/L)ẑ|

]
(10)

[5] b) What is the potential of the conducting sphere?

The surface of the conducting sphere is given by r = a. Since the method of
images guarantees that Φgrounded(r = a) = 0, and since we may rewrite (10) as

Φ = Φgrounded −
q

2πε0
1− a/L
|~x |

we immediately see that

Φ(r = a) = − q

2πε0

(
1
a
− 1
L

)
This is the potential of the conducting sphere.

[15] c) Calculate the multipole moments qlm. Make sure to indicate which moments are
non-vanishing.

In order to calculate the multipole moments, we first rewrite (10) using the az-
imuthally symmetric expansion

1
|~x− ~x ′|

=
∑
l

rl<
rl+1
>

Pl(cos γ)

where cos γ = x̂ · x̂′, and where r< = min(r, r′) and r> = max(r, r′). Since the
charges are on the ẑ axis, the angle γ is either θ or π − θ. The expansion of (10)
is then

Φ =
q

4πε0

[
−2 + 2a/L

r
+
∑
l

(
rl<
rl+1
>

− a

L

(a2/L)l

rl+1

)(
Pl(cos θ) + Pl(− cos θ)

)]
Since Pl(−x) = (−1)lPl(x), this expression simplifies to

Φ =
q

2πε0

−1 + a/L

r
+

∑
l=0,2,4,...

(
rl<
rl+1
>

− a2l+1

(rL)l+1

)
Pl(cos θ)


=

q

2πε0

( 1
r>
− 1
r

)
+

∑
l=2,4,...

(
rl<
rl+1
>

− a2l+1

(rL)l+1

)
Pl(cos θ)





The asymptotic potential far away from the charges is obtained by taking r< = L
and r> = r. In this case

Φ =
q

2πε0

∑
l=2,4,...

(
Ll

rl+1
− a2l+1

(rL)l+1

)
Pl(cos θ)

=
q

2πε0

∑
l=2,4,...

Ll
(

1−
( a
L

)2l+1
)
Pl(cos θ)
rl+1

=
q

2πε0

∑
l=2,4,...

√
4π

2l + 1
Ll
(

1−
( a
L

)2l+1
)
Y 0
l (Ω)
rl+1

Comparing with with the multipole expansion

Φ =
1

4πε0

∑
l,m

4π
2l + 1

qlm
Y ml (Ω)
rl+1

allows us to identify the multipole moments

ql,0 =

√
2l + 1
π

qLl
(

1−
( a
L

)2l+1
)

l = 2, 4, 6, . . . (11)

Alternatively, these moments may be obtained by realizing that this problem is
equivalent to a five point charge problem by the method of images. The five point
charges are the obvious ones leading to the potential (10)

ρ(~x) = q
[
−2(1− a/L)δ(3)(~x ) + δ(3)(~x− Lẑ) + δ(3)(~x+ Lẑ)

− (a/L)δ(3)(~x− (a2/L)ẑ)− (a/L)δ(3)(~x+ (a2/L)ẑ)
]

In general, the multipole moments are defined by

qlm =
∫
ρ(~x )rlY m ∗l (Ω)d3x

However, because of azimuthal symmetry, only the m = 0 moments are non-
vanishing. In this case

ql,0 =

√
2l + 1

4π

∫
ρ(~x )rlPl(cos θ)d3x

=

√
2l + 1

4π
q
[
−2
(

1− a

L

)
δl,0 + LlPl(1) + LlPl(−1)

− a

L

(a2

L

)l
Pl(1)− a

L

(a2

L

)l
Pl(−1)

]
Since Pl(1) = 1 and Pl(−1) = (−1)l, this simplifies to

ql,0 =

√
2l + 1
π

q

[
−
(

1− a

L

)
δl,0 + Ll

(
1−

( a
L

)2l+1)]
l even

Noting that the l = 0 term vanishes, we see that this result is identical to (11).


