
Physics 505 Fall 2007

Homework Assignment #10 — Solutions

Textbook problems: Ch. 6: 6.1, 6.4, 6.13, 6.18

6.1 In three dimensions the solution to the wave equation (6.32) for a point source in
space and time (a light flash at t′ = 0, ~x ′ = 0) is a spherical shell disturbance of radius
R = ct, namely the Green function G(+) (6.44). It may be initially surprising that in
one or two dimensions, the disturbance possesses a “wake”, even though the source
is a “point” in space and time. The solutions for fewer dimensions than three can be
found by superposition in the superfluous dimension(s), to eliminate dependence on
such variable(s). For example, a flashing line source of uniform amplitude is equivalent
to a point source in two dimensions.

a) Starting with the retarded solution to the three-dimensional wave equation (6.47),
show that the source f(~x ′, t) = δ(x′)δ(y′)δ(t′), equivalent to a t = 0 point source
at the origin in two spatial dimensions, produces a two-dimensional wave

Ψ(x, y, t) =
2cΘ(ct− ρ)√
c2t2 − ρ2

where ρ2 = x2 + y2 and Θ(ξ) is the unit step function [Θ(ξ) = 0 (1) if ξ < (>) 0.]

Using

Ψ(~x, t) =
∫

[f(~x ′, t′)]ret
|~x− ~x ′|

d3x′

we find

Ψ(~x, t) =
∫
δ(x′)δ(y′)δ(t−R/c)

R
dx′dy′dz′

=
∫ ∞
−∞

δ(t−R/c)
R

dz′

where
R = |~x− ~x ′| =

√
ρ2 + (z − z′)2 when x′ = y′ = 0

By shifting z′ → z′ + z, we end up with the integral

Ψ(ρ, t) =
∫ ∞
−∞

δ(t−
√
ρ2 + z′2/c)√
ρ2 + z′2

dz′ (1)

Using

δ(f(ζ)) =
∑
i

1
|f ′(ζ)|

δ(ζ − ζi) (2)



where the sum is over the zeros of f(ζ), we see that

δ(t−
√
ρ2 + z′2/c) =

∑
i

c
√
ρ2 + z′2

|z′|
δ(z′ − z′i)

The zeros z′i are given by

ρ2 + z′2 = c2t2 ⇒ z′ = ±
√
c2t2 − ρ2

However it is clear that there are real zeros only if c2t2 ≥ ρ2 or ρ < ct. Going
back to (1), and noting there are two zeros (one for each sign of the square root),
we end up with

Ψ(ρ, t) =
2cΘ(ct− ρ)√
c2t2 − ρ2

b) Show that a “sheet” source, equivalent to a point pulsed source at the origin in
one space dimension, produces a one-dimensional wave proportional to

Ψ(x, t) = 2πcΘ(ct− |x|)

For the sheet source, we use f(~x ′, t′) = δ(x′)δ(t′) to write

Ψ(~x, t) =
∫
δ(x′)δ(t−R/c)

R
dx′dy′dz′

where R =
√

(x− x′)2 + (y − y′)2 + (z − z′)2. By integrating x′ and shifting
y′ → y′ + y and z′ → z′ + z we end up with

Ψ(x, t) =
∫
δ(t−

√
x2 + y′2 + z′2/c)√
x2 + y′2 + z′2

dy′dz′ =
∫
δ(t−

√
ρ′2 + x2/c)√
ρ′2 + x2

ρ′dρ′dφ′

where we have gone to polar coordinates in the y′-z′ plane. The φ′ integral is
now trivial. Treating the delta function as in (2) results in

Ψ(x, t) = 2π
∫ ∞

0

∑
i

cδ(ρ′ − ρ′i)dρ′

where the zeros ρ′i corespond to

ρ′2 + x2 = c2t2 ⇒ ρ′ = ±
√
c2t2 − x2

Since ρ′ is non-negative, only the positive zero contributes, and we end up with

Ψ(x, t) = 2πcΘ(ct− |z|)



where the step function enforces the condition for a real zero to exist.

6.4 A uniformly magnetized and conducting sphere of radius R and total magnetic mo-
ment m = 4πMR3/3 rotates about its magnetization axis with angular speed ω. In
the steady state no current flows in the conductor. The motion is nonrelativistic; the
sphere has no excess charge on it.

a) By considering Ohm’s law in the moving conductor, show that the motion induces
an electric field and a uniform volume charge density in the conductor, ρ =
−mω/πc2R3.

We assume the sphere is magnetized and spinning along the ẑ axis. Since the
magnetic moment is ~m = ~M V where V = 4

3πR
3 is the volume of the sphere,

we see that the magnetization is simply ~M = Mẑ. As demonstrated earlier, a
uniformly magnetized sphere has a uniform magnetic induction ~B = 2

3µ0
~M in its

interior. In terms of m, this is

~B = 2
3µ0

(
3

4πR3
mẑ

)
=

µ0m

2πR3
ẑ

We now observe that the electric field ~E′ in the rotating frame of the sphere may
be related to lab quantities ~E and ~B by ~E′ = ~E + ~v × ~B. Ohm’s law in the
rotating reference frame is then ~J = σ ~E′ = σ( ~E +~v× ~B). Since no current flows
in the steady state ( ~J = 0), this motion must induce an electric field ~E = −~v× ~B.
Using ~ω = ωẑ and ~v = ~ω × ~r, we obtain

~E = −(~ω × ~r )× ~B = −µ0mω

2πR3
(ẑ × ~r )× ẑ = −µ0mω

2πR3
(~r − ẑ(ẑ · ~r ))

The vector structure is essentially a projection of ~r into the horizontal plane
perpendicular to the ẑ axis. In cylindrical coordinates, this indicates that

Eρ = −µ0mωρ

2πR3
(3)

It is then a simple matter of applying Gauss’ law to recover the volume charge
density. However, before we do so, we note that this is a cylindrically symmetric
electric field (pointed horizontally inward towards the ẑ axis). It may at first be
somewhat surprising that a sphere will give a cylindrical electric field. However,
rotation about an axis is actually a cylindrical process. So from this point of
view, the electric field is quite natural.

Using ρ = ε0~∇ · ~E we obtain a uniform volume charge density

ρ = ε0
∂Eρ
∂ρ

= −µ0ε0mω

2πR3
= − mω

2πc2R3

It is important to note that, while the charge density is uniform inside the sphere,
the electric field is not radial. The discrepancy between a uniform spherical charge



distribution and the cylindrical electric field must then arise due to a surface
charge. This then provides a hint as to how to approach the remainder of this
problem.

b) Because the sphere is electrically neutral, there is no monopole electric field out-
side. Use symmetry arguments to show that the lowest possible electric multipo-
larity is quadrupole. Show that only a quadrupole field exists outside and that the
quadrupole moment tensor has nonvanishing components, Q33 = −4mωR2/3c2,
Q11 = Q22 = −Q33/2.

No charge resides outside the sphere. As a result, the exterior field may be
described through the multipole expansion. As indicated, charge neutrality guar-
antees the vanishing of the monopole (l = 0) moment. Furthermore, the odd
moments vanish due to symmetry of the electric field (3) under the parity trans-
formation z → −z. (That is of course the internal field; however we may see that
the external field must necessarily respect the symmetry of the internal one.)
Thus a simple symmetry argument demonstrates that the lowest possible mul-
tipole is the quadrupole (l = 2). Symmetry alone will not preclude higher even
moments. However an explicit calculation will.

Without knowing the surface charge, we cannot directly calculate the electric
multipoles. However, we note that the interior electric field (3) can be integrated
to obtain the interior electrostatic potential

Φ(ρ) = −
∫

~E · ~d` = −
∫
Eρ dρ = Φ0 +

µ0mωρ
2

4πR3

Converted back to spherical coordinates, this gives

Φ(r, θ) = Φ0 +
µ0mω

4πR3
r2 sin2 θ = Φ0 +

µ0mω

6πR3
r2[P0(cos θ)− P2(cos θ)]

where we have converted sin2 θ into Legendre polynomials. This can be written
explicitly as a Legendre expansion

Φ(r, θ) =
(

Φ0 +
µ0mω

6πR3
r2
)
P0(cos θ)− µ0mω

6πR3
r2P2(cos θ)

so that in particular the potential at the surface of the sphere is

Φ(R, θ) =
(

Φ0 +
µ0mω

6πR

)
P0(cos θ)− µ0mω

6πR
P2(cos θ)

We may now solve for the exterior potential by treating this as an electrostatic
boundary value problem. We recall that, given a sphere with azimuthally sym-
metric potential V (θ) =

∑
l αlPl(cos θ) on the surface, the exterior solution has

the form Φ(r, θ) =
∑
l αl(R/r)

l+1Pl(cos θ). Furthermore, charge neutrality in the



present case forces the monopole (l = 0) term to vanish. Hence we find that
Φ0 = −µ0mω/6πR, and that the external potential is

Φ(r, θ) = −µ0mωR
2

6πr3
P2(cos θ) (4)

Incidentally, we could write an expression valid both in the interior and the
exterior as

Φ(r, θ) =
µ0mω

6πR

[(
r2

R2
− 1
)

Θ(R− r)P0(cos θ)−R
r2<
r3>
P2(cos θ)

]
(5)

Note that this potential is only harmonic outside the sphere; inside the sphere
the r2/R2 term multiplying P0(cos θ) is not of the right (Alrl+Blr

−l−1)Pl(cos θ)
form to be harmonic. However, this is present precisely because of the uniform
volume charge density, which acts as a l = 0 source.

In any case, we are essentially done, as the exterior potential (4) clearly has only
a quadrupole term

Φ = −
√

4π
5
µ0mωR

2

6π
Y2,0(θ, φ)

r3

Comparing this with the multipole expansion

Φ =
1

4πε0

∑
l,m

4π
2l + 1

ql,m
Yl,m(θ, φ)
rl+1

gives

q2,0 = −4πε0

√
5

4π
µ0mωR

2

6π
= −

√
5

4π
2mωR2

3c2

Converting to cartesian tensors yields

Q33 = 2

√
4π
5
q2,0 = −4mωR2

3c2
, Q11 = Q22 = − 1

2Q33

c) By considering the radial electric fields inside and outside the sphere, show that
the necessary surface-chrage density σ(θ) is

σ(θ) =
1

4πR2

4mω
3c2

[
1− 5

2
P2(cos θ)

]
The surface charge may be computed by first obtaining the jump in the normal
component of the electric field at the surface of the sphere. Working in spherical
components, and taking the gradient of the potential (5), we find

Eout
r = −µ0mωR

2

2πr4
P2(cos θ)

Ein
r = −µ0mωr

3πR3
[P0(cos θ)− P2(cos θ)]



The surface charge is then computed as

σ = ε0(Eout
r − Ein

r )
∣∣∣
r=R

= −µ0ε0mω

3πR2
[ 32P2(cos θ)− (P0(cos θ)− P2(cos θ))]

=
mω

3πc2R2
[P0(cos θ)− 5

2P2(cos θ)]

d) The rotating sphere serves as a unipolar induction device if a stationary circuit
is attached by a slip ring to the pole and a sliding contact to the equator. Show
that the line integral of the electric field from the equator contact to the pole
contact (by any path) is E = µ0mω/4πR.

Although the sphere is rotating, both the electric and the magnetic field are
static. Hence the line integral of the electric field gives simply the e lectrostatic
potential. In this case

E =
∫ pole

equator

~E · d~̀= Φequator − Φpole = Φ(θ = π
2 )− Φ(θ = 0)

Using (4) or (5) evaluated on the surface, this becomes

E = −µ0mω

6πR
[P2(0)− P2(1)] =

µ0mω

4πR

6.13 A parallel plate capacitor is formed of two flat rectangular perfectly conducting sheets
of dimensions a and b separated by a distance d small compared to a or b. Current is
fed in and taken out uniformly along the adjacent edges of length b. With the input
current and voltage defined at this end of the capacitor, calculate the input impedance
or admittance using the field concepts of Section 6.9.

a) Calculate the electric and magnetic fields in the capacitor correct to second order
in powers of the frequency, but neglecting fringing fields.

To set up this problem, we introduce a coordinate system

I

a
x

y

b

where the two plates are separated by a distance d along the z axis (pointing out
of the page). For an electrostatic system, the electric and magnetic fields in the
capacitor are simple to write down

~E = −(V/d)ẑ, ~B = 0



where we have assumed the top plate is positively charged, and where V denotes
the voltage difference between the plates. These expressions neglect fringing, of
course.

For a harmonically varying voltage with frequency ω, we may generalize the
electric field expression to

~E(0) = −(V/d) cos(ωt)ẑ

which we can write as the real part of

~E(0) = −(V/d)e−iωtẑ (6)

The (0) superscript denotes the ‘simple’ or zeroth order expression for the electric
field. We now note that since this electric field is varying in time, it induces
a displacement current, which in turn generates a magnetic field through the
Ampère-Maxwell equation ~∇ × ~B = µ0

~J + (1/c2)∂ ~E/∂t. Since ~J = 0 between
the plates of the capacitor, this equation gives rise to

~∇× ~B(1) = − iω
c2
~E(0) =

iω

c2
V

d
ẑ (7)

where we have converted to the frequency domain and where we have suppressed
the harmonic factor e−iωt. In order to determine the induced magnetic field
~B(1), we now appeal to a symmetry argument. Since the current is uniformly
fed in along the left side of the capacitor (ie independent of y), we expect the
fields to be independent of y, so long as we do not get too close to the edges of
the capacitor. We furthermore assume that the fields are independent of the z
direction. This is certainly true for the zeroth order electric field (6). In addition,
since the displacement current is independent of z, it is natural for ~B(1) to also
be independent of z. In this case, ~B(1) can only depend on x, and in order to
solve (7) it needs to point in the ŷ direction

~B(1) =
iω

c2
V

d
(x− x0)ŷ

(Actually we can add to this a uniform magnetic field pointing in an arbitrary
direction. However, any x̂ or ẑ component of the magnetic field would not obey
the symmetry properties of this system, ignoring fringing.) Here x0 is a constant
of integration, and it cannot be eliminated by symmetry alone.

In order to figure out the constant x0, we may related the magnetic field to the
surface current density ~K for the current flowing in the plates of the capacitor.
We assume the magnetic field is contained between the two plates of the capacitor.
In this case, the current density on the top plate of the capacitor is given by

~K = n̂× ~H



where n̂ is the unit normal pointing from the top plate towards the bottom plate
(ie n̂ = −ẑ). This gives

~K = −ẑ × iω

µ0c2
V

d
(x− x0)ŷ = ε0iω

V

d
(x− x0)x̂

Physically this makes sense, since the surface current is flowing in the x̂ direction
in and out of the plates of the capacitor. We now use the fact that the current
is fed in on the left side (x = 0). By current conservation, since charge cannot
disappear off the right side of the capacitor (x = a), the current must go to zero
when x = a. This requirement shows us that we must set the integration constant
x0 = a in the above. As a result, we end up with

~B(1) =
iω

c2
V

d
(x− a)ŷ (8)

At this stage, it should not be a surprise to us to note that this oscillating magnetic
field will in turn induce an electric field ~E(2) through Faraday’s law (for harmonic
fields)

~∇× ~E(2) = iω ~B(1) = −ω
2

c2
V

d
(x− a)ŷ

Assuming, by symmetry, that ~E(2) points in the ẑ direction, we find

~E(2) =
ω2

c2
V

d
ẑ

∫
(x− a)dx =

ω2

c2
V

d
[ 12 (x− a)2 − C]ẑ

where C is a constant of integration. In order to fix this constant C, we note that
we have defined the electric field ~E(0) in (6) based on the voltage V measured at
the left (x = 0) side of the capacitor. Since ~E(0)(x = 0) is already the ‘correct’
value, we do not want ~E(2)(x = 0) to add any correction to this. We thus demand
~E(2)(x = 0) = 0, and this fixes the constant to be C = a2/2. We may then write

~E(2) =
ω2

c2
V

2d
[(x− a)2 − a2]ẑ (9)

To continue, we now note that the time varying ~E(2) will create a magnetic field
~B(3) through the Ampère-Maxwell equation

~∇× ~B(3) = − iω
c2
~E(2) = − iω

3

c4
V

2d
[(x− a)2 − a2]ẑ

The solution to this is

~B(3) = − iω
3

c4
V

2d
[ 13 (x− a)3 − a2(x− a)]ŷ (10)



Obviously, this process can go on forever, and we end up with a series solution
for the complete electric and magnetic fields. The reason this series converges
is that we essentially have an expansion parameter of the form ω/c, which we
consider to be small. (Actually, a more proper expansion parameter would be the
dimensionless quantity ωa/c.) Stopping at this order, we collect (6), (8), (9) and
(10) to obtain

~E = ~E(0) + ~E(2) + · · · ≈ −V
d

(
1− ω2

2c2
[(x− a)2 − a2] + · · ·

)
ẑ

~B = ~B(1) + ~B(3) + · · · ≈ iV

d

ω

c2
(x− a)

(
1− ω2

2c2
[ 13 (x− a)2 − a2] + · · ·

)
ŷ

(11)

At this stage, we note that the Gauss’ law equations ~∇ · ~E = 0 and ~∇ · ~B = 0
are trivially satisfied as well. Restoring the e−iωt factor and taking the real part
gives

~E ≈ −V
d

(
1− ω2

2c2
[(x− a)2 − a2] + · · ·

)
cos(ωt)ẑ

~B ≈ V

d

ω

c2
(x− a)

(
1− ω2

2c2
[ 13 (x− a)2 − a2] + · · ·

)
sin(ωt)ŷ

Note that this iterative procedure of using the Ampère-Maxwell law and Faraday’s
law is essentially equivalent to developing a perturbation series solution. We could
also be more direct and note that the frequency domain expressions

~∇× ~B = − iω
c2
~E, ~∇× ~E = iω ~B

simplify under the assumptions

~E = Ez(x)ẑ, ~B = By(x)ŷ

to become
B′y(x) = − iω

c2
Ez(x), E′z(x) = −iωBy(x) (12)

Taking an x derivative of the first equation and using the second then gives

B′′y (x) = − iω
c

2

E′z(x) = −ω
2

c2
By(x)

This is a standard ‘harmonic oscillator’ differential equation, and the solution
may be written as

By = B0 sin
[ω
c

(x− a)
]

Note that we have chosen boundary conditions such that By(x = a) = 0. Substi-
tuting this magnetic field into the first equation of (12) then gives

Ez = icB0 cos
[ω
c

(x− a)
]



Since B0 is an integration constant, we may choose to rewrite these expressions
as

Ez = −V
d

cos[ω(x− a)/c]
cos(ωa/c)

By = i
V

cd

sin[ω(x− a)/c]
cos(ωa/c)

Note that Ez(x = 0) = −V/d and By(x = a) = 0. Expanding this for small ω
reproduces the series solution of (11).

Finally, note that we may calculate the surface charge density on the top plate
by

σ = −ε0Ez =
ε0V

d

cos[ω(x− a)/c]
cos(ωa/c)

and the surface current density by

~K = −ẑ × ~H =
ε0ciV

d

sin[ω(x− a)/c]
cos(ωa/c)

x̂

We can verify that this satisfies the frequency domain current conservation law

~∇ · ~J − iωρ = 0

where ~J = ~Kδ(z − d) and ρ = σδ(z − d) for the top plate located at z = d.

Note that we have been a bit sloppy about specifying how the current is fed into
the capacitor on the left side of the plates. Our implicit assumption is that the
current is fed in the top plate and taken out of the bottom plate in such a way
that the magnetic fields created by the input wires are negligible. As a result,
we assume all electric and magnetic fields are essentially vanishing except in the
volume between the plates. If we had fields outside of the plates, then there
may be additional contributions to the surface charge density and surface current
density expressions of the form

σ = −ẑ · ( ~Ein − ~Eout), ~K = −ẑ × ( ~Hin − ~Hout)

b) Show that the expansion of the reactance (6.140) in powers of the frequency to
an appropriate order is the same as that obtained for a lumped circuit consisting
of a capacitance C = ε0ab/d in series with an inductance L = µ0ad/3b.

The expression for reactance is given by

X ≈ 4ω
|Ii|2

∫
V

(wm − we)d3x (13)

To lowest nontrivial order, we use (6) and (8) to write

we =
ε0
4
| ~E|2 ≈ ε0|Vi|2

4d2
, wm =

1
4µ0
| ~B|2 ≈ ω2|Vi|2

4µ0c4d2
(x− a)2 (14)



These expressions are given in terms of the input voltage Vi. However we would
like to rewrite them in terms of the current Ii. To do so, we note that given (6)

~E ≈ −Vi
d
ẑ

the surface charge density on the top plate is

σ = −ε0ẑ · ~E ≈
ε0Vi
d

At this level of approximation, these expressions are identical to the electrostatic
case. In particular, σ is approximately uniform across the top plate, so the total
charge on the capacitor is given by

Q = σ × (Area) ≈ ε0Viab

d

Although this looks identical to the static expression, we should keep in mind
that all the quantities we are writing down here are actually harmonic (ie they
should be multiplied by e−iωt). As a result, we obtain the current

Ii =
dQ

dt
= −iωQ ≈ − iωε0Viab

d

Solving this for Vi and substituting into (14) results in

we ≈
|Ii|2

4ε0ω2a2b2
, wm ≈

µ0|Ii|2

4a2b2
(x− a)2

Integrating the energy densities over the volume between the plates of the capac-
itor gives ∫

we d
3x ≈ |Ii|2d

4ε0ω2ab∫
wm d

3x ≈ µ0|Ii|2d
4a2b

∫ a

0

(x− a)2dx =
µ0|Ii|2ad

12b

Inserting these expressions into (13) gives a reactance

X ≈ µ0ωad

3b
− d

ε0ωab

Identifying X = ωL for an inductance and X = −1/ωC for a capacitance, we see
that the above expression is equivalent to a series combination of a capacitor and
inductor with

C =
ε0ab

d
, L =

µ0ad

3b



6.18 Consider the Dirac expression

~A(~x ) =
g

4π

∫
L

d~l ′ × (~x− ~x ′)
|~x− ~x ′|3

for the vector potential of a magnetic monopole and its associated string L. Suppose
for definiteness that the monopole is located at the origin and the string along the
negative z axis.

a) Calculate ~A explicitly and show that in spherical coordinates it has components

Ar = 0, Aθ = 0, Aφ =
g(1− cos θ)

4πr sin θ
=
( g

4πr

)
tan

θ

2

Taking the Dirac string along the negative ẑ axis, we write ~x ′ = z′ẑ and d~̀′ =
ẑdz′. Hence Dirac’s expression is

~A(~x ) =
g

4π

∫ 0

−∞
dz′

ẑ × (~x− z′ẑ)
|~x− z′ẑ|3

=
g

4π

∫ 0

−∞
dz′

ẑ × ~x
[ρ2 + (z − z′)2]3/2

=
g

4π
(ẑ × ~x)

∫ −z
−∞

du

(ρ2 + u2)3/2

This integral is easily performed by trig substitution. The result is

~A(~x ) =
g

4π
ẑ × ~x
ρ2

(
1− z

r

)
where ρ2 = x2 + y2 and r2 = x2 + y2 + z2. Noting that ẑ × ~x = ρφ̂ = r sin θφ̂,
and converting to spherical coordinates, we obtain

~A(~x ) =
g

4π
r − z
r2 sin θ

φ̂ =
g

4π
1− cos θ
r sin θ

φ̂

b) Verify that ~B = ~∇× ~A is the Coulomb-like field of a point charge, except perhaps
at θ = π.

Note that the vector potential blows up on the negative ẑ axis. (The positive
ẑ axis is safe, as a Taylor or l’Hopital expansion near θ = 0 will demonstrate.)
Away from this point, we have

~B = ~∇× ~A = r̂
1

r sin θ
∂θ(sin θAφ)− θ̂1

r
∂r(rAφ)

= r̂
1

r sin θ
∂θ

(
g

4π
1− cos θ

r

)
= r̂

( g

4πr2
)



which is the expected field of a magnetic monopole.

c) With the ~B determined in part b, evaluate the total magnetic flux passing through
the circular loop of radius R sin θ shown in the figure. Consider θ < π/2 and
θ > π/2 separately, but always calculate the upward flux.

Assuming ~B = gr̂/4πr2 everywhere, the flux through a circular loop of radius
R sin θ is

Φ =
∫

~B · n̂ da =
∫
Bz da =

g

4π

∫
z

(ρ2 + z2)3/2
ρdρ dφ

=
gz

4

∫ (R sin θ)2

0

du

(u+ z2)3/2
= − gz

2
1√

u+ z2

∣∣∣∣(R sin θ)2

0

=
gR cos θ

2

(
1

R| cos θ|
− 1
R

)
=
g

2
(
sgn(cos θ)− cos θ

)
where we have used z = R cos θ. For θ < π/2 (the top hemisphere) we find
Φtop = g

2 (1−cos θ), while for θ > π/2 we find Φbottom = g
2 (−1−cos θ). Note that

the (upward) flux so calculated is discontinuous as we pass through the plane of
the monopole.

d) From
∮
~A · d~l around the loop, determine the total magnetic flux through the

loop. Compare the result with that found in part c. Show that they are equal
for 0 < θ < π/2, but have a constant difference for π/2 < θ < π. Interpret this
difference.

By Stokes’ theorem, the line integral of the vector potential gives the magnetic
flux. We find∮

~A · d~̀=
∫ 2π

0

Aφ(R, θ)R sin θ dφ =
g

4π
1− cos θ
R sin θ

(2πR sin θ) =
g

2
(1− cos θ)

Thus ∮
~A · d~̀= Φtop = Φbottom + g

What has happened in this case is that the computation of part c did not take
into account the flux of the Dirac string. For a positively charged monopole, the
Dirac string carries upward magnetic flux. So the total flux of the monopole plus
string is really Φbottom + g. This is fully accounted for by taking the line integral
of the vector potential (which is after all the vector potential due to the Dirac
string).

Of course, an ‘honest’ magnetic monopole will have a magnetic field ~B = gr̂/4πr2

everywhere in space. In this case, the flux calculation of part c) is the ‘correct’ one.
Every calculation involving the vector potential must then be treated with care,
and in particular the location of the Dirac string may have to be moved by gauge



transformation when working with ~A in the southern hemisphere. In the modern
language of differential geometry (fiber bundles), we have to introduce separate
coordinate patches for the northern and southern hemisphere, with an overlap
region around the equator. We then define differentiable transition functions
(essentially gauge transformations) connecting the different sections of the bundle
in the overlap region. The Dirac string can then be avoided by working with the
fiber bundle itself.


