
Physics 505 Fall 2005

Homework Assignment #11 — Solutions

Textbook problems: Ch. 7: 7.3, 7.5, 7.8, 7.16

7.3 Two plane semi-infinite slabs of the same uniform, isotropic, nonpermeable, lossless
dielectric with index of refraction n are parallel and separated by an air gap (n = 1)
of width d. A plane electromagnetic wave of frequency ω is indicent on the gap from
one of the slabs with angle of indicence i. For linear polarization both parallel to and
perpendicular to the plane of incidence,

a) calculate the ratio of power transmitted into the second slab to the incident power
and the ratio of reflected to incident power;

We introduce (complex) electric field vectors of the form ~Eie
i~k·~x and ~Ere

−i~k·~x on
the incident side, ~E+ei~k0·~x and ~E−e−i~k0·~x in the air gap, and ~Ete

i~k·(~x−~d) on the
transmitted side. (We have removed an unimportant phase from the transmitted
side by shifting ~x by the vector ~d pointing from the incident to the transmitted
side of the air gap. If i is the incident angle, then the angle r from the normal
in the air gap is given by Snell’s law, n sin i = sin r, and the transmitted angle is
also i (because it is the same dielectric). We see that

cos r =
√

1− sin2 r =
√

1− n2 sin2 i

and that cos r is purely imaginary in the event that i is greater than the critical
angle for total internal reflection. To obtain Et and Er in terms of Ei, we may
match the parallel components of ~E as well as the parallel components of ~H. We
consider two cases.

For ~E perpendicular to the plane of incidence, the matching becomes

first interface second interface

E‖ : Ei + Er = E+ + E−, E+eiφ + E−e−iφ = Et

H‖ : n(Ei − Er) cos i = (E+ − E−) cos r, (E+eiφ − E−e−iφ) cos r = nEt cos i

where we have introduced the phase

φ = ~k0 · ~d = k0d cos r =
ωd cos r

c

The matching conditions at the first interface may be written as

E+ = 1
2Ei(1 + α) + 1

2Er(1− α)
E− = 1

2Ei(1− α) + 1
2Er(1 + α)

(1)



where we have defined

α =
n cos i

cos r
=

n cos i√
1− n2 sin2 i

Similarly, the matching conditions at the second interface yield

E+ = 1
2e−iφEt(1 + α)

E− = 1
2eiφEt(1− α)

(2)

Equating (1) and (2) allows us to solve for the ratios

Et

Ei
=

4α

(1 + α)2e−iφ − (1− α)2eiφ
=

2α

2α cos φ− i(1 + α2) sinφ

Er

Ei
=

(1− α2)(eiφ − e−iφ)
(1 + α)2e−iφ − (1− α)2eiφ

=
i(1− α2) sinφ

2α cos φ− i(1 + α2) sinφ

(3)

where

α =
n cos i√

1− n2 sin2 i
, φ =

ωd cos r

c
=

ωd
√

1− n2 sin2 i

c

So long as i is below the critical angle, both α and φ are real. In this case, the
transmission and reflection coefficients are

T =
∣∣∣∣Et

Ei

∣∣∣∣2 =
4α2

4α2 cos2 φ + (1 + α2)2 sin2 φ
=

4α2

4α2 + (1− α2)2 sin2 φ

R =
∣∣∣∣Er

Ei

∣∣∣∣2 =
(1− α2)2 sin2 φ

4α2 cos2 φ + (1 + α2)2 sin2 φ
=

(1− α2)2 sin2 φ

4α2 + (1− α2)2 sin2 φ

(4)

Note that T + R = 1, as expected. However, this exhibits a classic interference
behavior, where T oscillates between (2α/(1 + α2))2 and 1 as the number of
wavelengths in the gap vary.

For ~E parallel to the plane of incidence, we find instead the matching conditions

first interface second interface

E‖ : (Ei − Er) cos i = (E+ − E−) cos r, (E+eiφ − E−e−iφ) cos r = Et cos i

H‖ : n(Ei + Er) = (E+ + E−), E+eiφ − E−e−iφ = nEt

These equations have the same structure as the perpendicular case, but with
the index of refraction entering somewhat differently. We find the matching
conditions

n−1E+ = 1
2Ei(1 + β) + 1

2Er(1− β)

n−1E− = 1
2Ei(1− β) + 1

2Er(1 + β)



and
n−1E+ = 1

2e−iφEt(1 + β)

n−1E− = 1
2eiφEt(1− β)

where this time

β =
cos i

n cos r
=

cos i

n
√

1− n2 sin2 i

These expressions are similar to (1) and (2) above, and hence the transmission
and reflection coefficients are given by expressions identical to (4), except with
the replacement α → β.

b) for i greater than the critical angle for total internal reflection, sketch the ratio
of transmitted power to incident power as a function of d measured in units of
wavelength in the gap.

To be concrete, consider the case for ~E perpendicular to the plane of incidence.
Since i is greater than the critical angle, both α and φ will be purely imaginary.
Whatever values they are, define

α = iγ, φ = iξ

Then the ratios Et/Ei and Er/Ei in (3) become

Et

Ei
=

2iγ

2iγ cosh ξ + (1− γ2) sinh ξ

Er

Ei
=

−(1 + γ2) sinh ξ

2iγ cosh ξ + (1− γ2) sinh ξ

so that

T =
∣∣∣∣Et

Ei

∣∣∣∣2 =
4γ2

4γ2 + (1 + γ2) sinh2 ξ

R =
∣∣∣∣Er

Ei

∣∣∣∣2 =
(1 + γ2)2 sinh2 ξ

4γ2 + (1 + γ2) sinh2 ξ

In this case, there is no oscillatory behavior in the transmitted power, but only
exponential suppression as the air gap is widened. It is easy to see that T → 1
when d → 0 (corresponding to ξ → 0) and that T falls exponentially to 0 when
d→∞ (which is the same as ξ →∞).

7.5 A plane polarized electromagnetic wave ~E = ~Eie
i~k·~x−iωt is incident normally on a flat

uniform sheet of an excellent conductor (σ � ωε0) having thickness D. Assuming
that in space and in the conducting sheet µ/µ0 = ε/ε0 = 1, discuss the reflection and
transmission of the incident wave.



a) Show that the amplitudes of the reflected and transmitted waves, correct to the
first order in (ε0ω/σ)1/2, are:

Er

Ei
=

−(1− e−2λ)
(1− e−2λ) + γ(1 + e−2λ)

Et

Ei
=

2γe−λ

(1− e−2λ) + γ(1 + e−2λ)

where

γ =

√
2ε0ω

σ
(1− i) =

ωδ

c
(1− i)

λ = (1− i)D/δ

and δ =
√

2/ωµσ is the penetration depth.

So long as we treat the conductor as a medium with complex dielectric constant

ε/ε0 = 1 + i
σ

ωε0

we may proceed as if everything were a dielectric. Since there are two boundaries,
this problem is very much like the above Problem 7.3, except the expressions are
even simpler because of the normal incidence. As above, we introduce electric
field vectors of the form ~Eie

i~k·~x and ~Ere
−i~k·~x on the incident side, ~E+ei~k1·~x and

~E−e−i~k1·~x in the conductor, and ~Ete
i~k·(~x−~D) on the transmitted side. We use

matching for ~E perpendicular to the plane of incidence (which corresponds to a
sign convention of having all electric fields pointing in the same direction). In
this case, the matching becomes

first interface second interface

E‖ : Ei + Er = E+ + E−, E+eiφ + E−e−iφ = Et

H‖ : (Ei − Er) = n(E+ − E−), n(E+eiφ − E−e−iφ) = Et

where n is the complex index of refraction

n =
√

ε

ε0
=

√
1 + i

σ

ωε0
(5)

and φ is the phase change for going through the dielectric

φ = k1D =
ωn

c
D =

ωD

c

√
1 + i

σ

ωε0
(6)

Solving for Et and Er in terms of Ei, we obtain

Et

Ei
=

4/n

(1 + 1/n)2e−iφ − (1− 1/n)2eiφ
=

4/neiφ

(1 + 1/n2)(1− e2iφ) + 2/n(1 + e2iφ)
Er

Ei
=

(1− 1/n2)(eiφ − e−iφ)
(1 + 1/n)2e−iφ − (1− 1/n)2eiφ

=
−(1− 1/n2)(1− e2iφ)

(1 + 1/n2)(1− e2iφ) + 2/n(1 + e2iφ)



which is essentially equivalent to (3), up to redefining α → 1/n. (In fact, this
problem can easily be generalized for incidence at an arbitrary angle i by taking
1/n→ cos i/n cos r.) We now take the limit where this is an excellent conductor,
σ/ωε0 � 1. In this case, the index of refraction (5) and phase change (6) may be
approximated by

n ≈
√

i
σ

ωε0
= (1 + i)

√
σ

2ε0ω
=

2
γ

φ =
ωD

c
n ≈ (1 + i)

ωD

c

√
σ

2ε0ω
= (1 + i)D

√
µ0σω

2
= iλ

For |γ| � 1 (equivalent to |n| � 1) we drop terms of O(1/n2) compared to 1 to
arrive at

Et

Ei
=

2γe−λ

(1− e−2λ) + γ(1 + e−2λ)
Er

Ei
=

−(1− e−2λ)
(1− e−2λ) + γ(1 + e−2λ)

(7)

where we have kept the O(γ) term in the denominator which becomes important
in the limit λ→ 0.

b) Verify that for zero thickness and infinite thickness you obtain the proper limiting
results.

The zero thickness limit corresponds to λ→ 0. In this case, it is easy to see from
(7) that

λ→ 0 :
Et

Ei
→ 1,

Er

Ei
→ 0

In the infinite thickness limit, we find instead

λ→∞ :
Et

Ei
→ 0,

Er

Ei
→ −1

1 + γ

Note that the reflection coefficient does not go to unity, as some of the power is
dissipated in the conductor. A perfect conductor (σ = ∞) has γ = 0, so all the
power is reflected in the perfect conductor limit.

c) Show that, except for sheets of very small thickness, the transmission coefficient
is

T =
8(<γ)2e−2D/δ

1− 2e−2D/δ cos(2D/δ) + e−4D/δ

Sketch log T as a function of (D/δ), assuming <γ = 10−2. Define “very small
thickness.”

To compute the transmission coefficient from (7), we keep in mind that both γ
and λ are complex. As long as we are not in the “very small thickness” limit, the



O(γ) term in the denominator can be ignored. In this case

Et

Ei
≈ 2γe−λ

(1− e−2λ)

so that

T =
∣∣∣∣Et

Ei

∣∣∣∣2 =
4|γ|2e−2<λ

1− 2<(e−2λ) + e−4<λ

Taking |γ|2 = 2(<γ)2 as well as e−2λ = e2iD/δe−2D/δ then gives

T =
8(<γ)2e−2D/δ

1− 2e−2D/δ cos(2D/δ) + e−4D/δ

The very small thickness limit corresponds to when the O(γ) term becomes im-
portant. This occurs when

|1− e−2λ| ' |γ(1 + e−2λ)|

Expanding for small λ yields

|2λ| ' |2γ| ⇒ D

δ
' ωδ

c

Hence small thicknesses correspond to

D <
ωδ2

c

7.8 A monochromatic plane wave of frequency ω is indicdent normally on a stack of layers
of various thicknesses tj and lossless indices of refraction nj . Inside the stack, the
wave has both forward and backward moving components. The change in the wave
through any interface and also from one side of a layer to the other can be described
by means of 2× 2 transfer matrices. If the electric field is written as

E = E+eikx + E−e−ikx

in each layer, the transfer matrix equation E′ = TE is explicitly(
E′

+

E′
−

)
=

(
t11 t12
t21 t22

) (
E+

E−

)
a) Show that the transfer matrix for propagation inside, but across, a layer of index

of refraction nj and thickness tj is

Tlayer(nj , tj) =
(

eikjtj 0
0 e−ikjtj

)
= I cos(kjtj) + iσ3 sin(kjtj)



where kj = njω/c, I is the unit matrix, and σk are the Pauli spin matrices of
quantum mechanics. Show that the inverse matrix is T ∗.

Again, normal incidence makes this problem straightforward. For a right moving
plane wave of the form eikjz passing through a layer of thickness tj , one picks up
a phase eikjtj , while for a left moving wave, one picks up a phase e−ikjtj . More
precisely

E′
+ = E+(z = tj) = E+(z = 0)eikjtj = E+eikjtj

E′
− = E−(z =j) = E−(z = 0)e−ikjtj = E−e−ikjtj

This directly leads to the transfer matrix

Tlayer(nj , tj) =
(

eikjtj 0
0 e−ikjtj

)
where the inverse is obviously the complex conjugate.

b) Show that the transfer matrix to cross an interface from n1 (x < x0) to n2

(x > x0) is

Tinterface(2, 1) =
1
2

(
n + 1 −(n− 1)
−(n− 1) n + 1

)
= I

(n + 1)
2

− σ1
(n− 1)

2

where n = n1/n2.

For the matching across layers, we again take the ~E perpendicular to plane of
incidence conventions. This gives simply

E‖ : E+ + E− = E′
+ + E′

−

H‖ : n1(E+ − E−) = n2(E′
+ − E′

−)

which may be solved to give

E′
+ = 1

2E+(1 + n) + 1
2E−(1− n)

E′
− = 1

2E+(1− n) + 1
2E−(1 + n)

where n = n1/n2. This yields the transfer matrix

Tinterface(2, 1) =
1
2

(
n + 1 −(n− 1)
−(n− 1) n + 1

)

c) Show that for a complete stack, the incident, reflected, and transmitted waves
are related by

Etrans =
det(T )

t22
Einc, Erefl = − t21

t22
Einc

where tij are the elements of T , the product of the forward-going transfer ma-
trices, including from the material filling space on the incident side into the first



layer and from the last layer into the medium filling the space on the transmitted
side.

It ought to be clear that the complete effect of going through several layers is to
take a product of transfer matrices. For example

E′ = TE, where T = · · ·T (4, 3)T (n3, t3)T (3, 2)T (n2, t2)T (2, 1)

The transmitted and reflected electric fields are obtained by solving(
Et

0

)
= T

(
Ei

Er

)
=

(
t11 t12
t21 t22

) (
Ei

Er

)
This gives explicitly

Et = t11Ei + t12Er, 0 = t21Ei + t22Er

which may be solved to obtain

Er = − t21
t22

Ei, Et =
t11t22 − t12t21

t22
Ei =

det(T )
t22

Ei

7.16 Plane waves propagate in a homogeneous, nonpermeable, but anisotropic dielectric.
The dielectric is characterized by a tensor εij , but if coordinate axes are chosen as
the principle axes, the components of displacement along these axes are related to the
electric-field components by Di = εiEi (i = 1, 2, 3), where εi are the eigenvalues of the
matrix εij .

a) Show that plane waves with frequency ω and wave vector ~k must satisfy

~k × (~k × ~E) + µ0ω
2 ~D = 0

This is in fact the general Maxwell wave equation, and does not depend on the
details of the dielectric tensor. This may be derived from the curl equations,
using ~∇ → i~k and ∂/∂t → −iω. In a source-free region, the Ampère-Maxwell and
Faraday laws give

i~k × ~H = −iω ~D, i~k × ~E − iω ~B = 0

Taking i~k cross Faraday’s law, and using ~B = µ0
~H gives

i~k × (i~k × ~E)− iµ0ω(i~k × ~H) = 0

It is then straightforward to substitute in Ampère’s law in the second term to
arrive at

~k × (~k × ~E) + µ0ω
2 ~D = 0



b) Show that for a given wave vector ~k = kn̂ there are two distinct modes of propa-
gation with different phase velocities v = ω/k that satisfy the Fresnel equation

3∑
i=1

n2
i

v2 − v2
i

= 0

where vi = 1/
√

µ0εi is called a principal velocity, and ni is the component of n̂
along the ith principal axis.

Letting ~k = kn̂, and using the BAC–CAB rule, we find

n̂(n̂ · ~E)− ~E + µ0v
2 ~D = 0

By working with the principle axes, this equation may be entirely written in terms
of ~E. Introducing the real symmetric matrices

Aij = ninj − δij , Wij = δijµ0εj = δij/v2
j

we arrive at a generalized eigenvalue problem

A ~E = −v2W ~E or (A + v2W) ~E = 0 (8)

The velocities of propagation are then the eigenvalues of this problem, and may
be obtained by solving the secular equation

0 = det(A + v2W) = v6 n2
1 + n2

2 + n2
3

v2
1v2

2v2
3

− v4

(
n2

2 + n2
3

v2
2v2

3

+
n2

1 + n2
3

v2
1v2

3

+
n2

1 + n2
2

v2
1v2

2

)
+ v2

(
n2

1

v2
1

+
n2

2

v2
2

+
n2

3

v2
3

)
=

v2

v2
1v2

2v2
3

[
n2

1(v
2 − v2

2)(v2 − v2
3) + n2

2(v
2 − v2

1)(v2 − v2
3)

+ n2
3(v

2 − v2
1)(v2 − v2

2)
]

Other than a trivial solution, v = 0 (which does not correspond to a propagating
mode), we find two velocities, va and vb, corresponding to the two roots of the
quadratic equation for v2 in the square brackets. In fact, taking the equation
in brackets and dividing out by the product Πi(v2 − v2

i ) immediately gives the
Fresnel equation ∑

i

n2
i

v2 − v2
i

= 0

c) Show that ~Da · ~Db = 0, where ~Da, ~Db are the displacements associated with the
two modes of propagation.



Here we may use standard linear algebra techniques related to the orthogonality
of eigenvectors. Considering first the generalized eigenvalue problem (8), we take
distinct eigenvalues va and vb. Then the corresponding eigenvectors satisfy the
equations

(A + v2
aW) ~Ea = 0, (A + v2

bW) ~Eb = 0

Left-multiplying the first equation by ~Eb and the second by ~Ea gives

~EbA ~Ea + v2
a
~EbW ~Ea = 0, ~EaA ~Eb + v2

b
~EaW ~Eb = 0

Since A and W are symmetric (real Hermitian), we may transpose the first
equation and subtract it from the second. The result is

(v2
b − v2

a) ~EaW ~Eb = 0

which implies ~EaW ~Eb = 0, since va 6= vb (in the case that va = vb, we may instead
Gram-Schmidt orthogonalize to make the eigenvectors orthogonal). Finally, since
W is µ0 times the dielectric matrix Σ = diag(ε1, ε2, ε3), and since ~D = Σ ~E, we
may equivalently rewrite this orthogonality (with respect to the ‘measure’ or
‘metric’ W) as

~Ea · ~Db = 0 or ~Eb · ~Da = 0

However, we can in fact learn more than this. Since the matrix A = n̂⊗ n̂− I is
not arbitrary, it satisfies the (almost) projection condition A2 = −A. As a result

~Da · ~Db = ~EaΣ2 ~Eb =
1
µ2

0

~EaW2 ~Eb =
1

µ2
0v

2
av2

b

~EaA2 ~Eb = − 1
µ2

0v
2
av2

b

~EaA ~Eb

But since A ~Eb = −v2
bW ~Eb, we obtain

~Da · ~Db =
1

µ2
0v

2
a

~EaW ~Eb =
1

µ0v2
a

~Ea · ~Db = 0

(Note, however, that in general ~Ea · ~Eb 6= 0.)


