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Prof. G. Raithel

Final exam

Problem 1 20 Points

a): In view of part b) of the problem, we seek a solution that involves sines and/or exponentials in the x-and
y-directions rather than Bessel functions. Thus, we’ll choose cartesian coordinates. Without the boundary
at z = 0, the free-space eigenfunctions are, as explained in Jackson Eq. 3.162,

const.× exp(ik · x) =: const.× exp(ikzz) exp(ik|| · x)

where for later convenience we split k into components transverse (kz) and parallel (k|| = k − ẑkz). These
can just as well written in the form

const.× sin(kzz) exp(ik|| · x) and const.× cos(kzz) exp(ik|| · x)

with kz > 0. For the given geometry, the eigenfunctions with a sine in the z-direction form a complete set.
To determine the normalization constant, we write

const2
∫ ∫ ∫

z>0

sin(kzz) exp(ik|| · x) sin(k′zz) exp(−ik′|| · x)d3x

= const2(2π)2δ2(k|| − k′||)
∫

z>0

sin(kzz) sin(k′zz)dz

= const22π2δ2(k|| − k′||)
(

1
2i

)2 ∫

z

[exp(ikzz)− exp(−ikzz)] [exp(ik′zz)− exp(−ik′zz)] dz

= const2
π2

2
δ2(k|| − k′||)

∫

z

[exp(i(kz − k′z)z) + exp(−i(kz − k′z)z)] dz

= const2
π2

2
δ2(k|| − k′||)4πδ(kz − k′z)

= const22π3δ3(k− k′) = δ3(k− k′)

and thus const = 1/
√

2π3. Thus,

ψk =
1√
2π3

sin(kzz) exp(ik|| · x)

with k =
√∣∣k||

∣∣2 + k2
z and kx ∈ {−∞, +∞}, ky ∈ {−∞, +∞}, and kz ∈ {0, +∞}. The eigenvalue equation,

(∆ + λ)ψk = (−k2 + λ) = 0

then shows λ = k2. From that it follows that



G(x,x′) =
2
π2

∫ kx=∞

kx=−∞

∫ ky=∞

kx=−∞

∫ kz=∞

kz=0

sin(kzz) sin(kzz
′)∣∣k||

∣∣2 + k2
z

exp
[
ik|| · (x− x′)

]
d3k

Note the different lower integration limits in kx, ky and kz.

Note. Though cylindrical coordinates would have been a less fortunate choice to continue with in part b),
a correct solution carries full score on part a). In partial analogy with one of the problems in homework set
9, it would work like that:

Find un-normalized eigenfunctions: Write ψ(ρ, z, φ) = R(ρ)Φ(φ)Z(z). Then,

(∆ + λ)RΦZ = 0
1
R

[
d2

ρ +
1
ρ
dρ

]
R +

1
ρ2

Φ′′

Φ
+

Z ′′

Z
+ λ = 0

Thus, Z(z) = sin(kzz) with kz ≥ 0 and

ρ2

R

[
d2

ρ +
1
ρ
dρ

]
R +

Φ′′

Φ
+ (λ− k2

z)ρ2 = 0

Thus, Φ(φ) = exp(imφ) with m = 0,±1,±2..., and

[
d2

ρ +
1
ρ
dρ + λ− k2

z −
m2

ρ2

]
R = 0

Finally, set λ− k2
z = k2

|| with k|| > 0 to find the unnormalized eigenfunction (see Eqns. 3.75ff in Jackson)

ψm,kz,k||(ρ, z, φ) = exp(imφ) sin(kzz)Jm(k||ρ)

with eigenvalue λ = k2
z + k2

||. To normalize, write

∫
ψ∗m′,k′z,k′||

(ρ, z, φ)ψm,kz,k||(ρ, z, φ)ρdρdφdz = 2πδm,m′
1
k||

δ(k|| − k′||)
∫ ∞

z=0

sin(kzz) sin(k′zz)dz

= 2πδm,m′
1
k||

δ(k|| − k′||)
π

4
δ(kz − k′z)

=
π2

2k||
δm,m′δ(k|| − k′||)δ(kz − k′z)

where we have used Eq. 3.108 in Jackson. The normalized eigenfunctions are thus

ψm,kz,k||(ρ, z, φ) =

√
2k||
π

exp(imφ) sin(kzz)Jm(k||ρ)



and the Green’s function, with Eqn. 3.160 of Jackson,

G(ρ, z, φ, ρ′, z′, φ′) =
∞∑

m=−∞

∫ ∞

kz=0

∫ ∞

k||=0

8k||
π(k2

z + k2
||)

exp(im(φ−φ′)) sin(kzz) sin(kzz
′)J|m|(k||ρ)J|m|(k||ρ′)dkzdk||

b): I show the calculation with an additional prefactor V0 in the boundary condition, i.e. V (x′) = V0 sin(k0 ·
x′) for z′ = 0. Set V0 = 1 to compare with the exam.

∂G

∂n′
= − ∂G

∂z′

∣∣∣∣
z′=0

= − 2
π2

∫ kx=∞

kx=−∞

∫ ky=∞

kx=−∞

∫ kz=∞

kz=0

kz sin(kzz) cos(kzz
′)∣∣k||

∣∣2 + k2
z

exp
[
ik|| · (x− x′)

]
∣∣∣∣∣
z′=0

d3k

= − 2
π2

∫ kx=∞

kx=−∞

∫ ky=∞

kx=−∞

∫ kz=∞

kz=0

kz sin(kzz)∣∣k||
∣∣2 + k2

z

exp
[
ik|| · (x− x′)

]
d3k

and

Φ(x) = − 1
4π

∫
V (x′)

∂G

∂n′
da′

Φ(x) =
1

2π3

∫ kx=∞

kx=−∞

∫ ky=∞

kx=−∞

∫ kz=∞

kz=0

kz sin(kzz)∣∣k||
∣∣2 + k2

z

V0 exp(ik|| · x)
∫

x′

∫

y′
sin(k0 · x′) exp(−ik|| · x′)d3kdx′dy′

=
1

2π3

∫ kx=∞

kx=−∞

∫ ky=∞

kx=−∞

∫ kz=∞

kz=0

kz sin(kzz)∣∣k||
∣∣2 + k2

z

V0 exp(ik|| · x)

×
{

1
2i

∫

x′

∫

y′
[exp(ik0 · x′)− exp(−ik0 · x′)] exp(−ik|| · x′)dx′dy′

}
d3k

=
1
iπ

∫ kx=∞

kx=−∞

∫ ky=∞

kx=−∞

∫ kz=∞

kz=0

kz sin(kzz)∣∣k||
∣∣2 + k2

z

V0 exp(ik|| · x)
{
δ(k0 − k||)− δ(k0 + k||)

}
d3k

=
1
iπ

∫ kz=∞

kz=0

kz sin(kzz)
|k0|2 + k2

z

V0 {exp(ik0 · x)− exp(−ik0 · x)} dkz

=
2
π

V0 sin(k0 · x)
∫ kz=∞

kz=0

kz sin(kzz)
k2
0 + k2

z

dkz

=
2
π

V0 sin(k0 · x)
π

2
exp(−k0z)

= V0 sin(k0 · x) exp(−k0z)

Note: The integral provided on the exam sheet was missing a factor 1
2 (I have a good excuse for that; it’s

wrong in my mathematical formulae handbook).

c): Two checks are necessary: the solution must satisfy the boundary condition, and in the volume of interest
it must solve the Laplace equation.

• For z′ = 0, it is Φ(x′) = V0 sin(k0 · x′) exp(−k0z
′) = V0 sin(k0 · x′) = V (x′)



• In the volume of interest, the Laplace equation is satisfied, because

∇2Φ(x) = V0∇2 [sin(k0 · x) exp(−k0z)] = V0

[−k2
0 + k2

0

]
= 0

The result can actually pretty easily guessed that way.



Problem 2 20 Points

This problem is a variant on the examples on magnetized and permeable spheres in homogeneous B-fields,
presented in the textbook.

a): Since B = µH and in general H 6= 0, the permeability is µ = 0 and, since µ = µ0(1 + χb), the
susceptibility is χb = −1.

b): There are no free currents; thus the magnetic potential can be used. We use spherical coordinates. The
origin is at the center of the sphere, and θ is measured with respect to the direction of the external B-field.
Due to azimuthal symmetry, φ is unimportant.

Inside: Φi(r, θ) =
∑

l Alr
lPl(cos θ)

Outside: Φe(r, θ) =
∑

l(Clr
−l−1 + Drδl,1)Pl(cos θ)

The boundary conditions are, due to the absence of free currents, Tangential H-component:

Hθ,i|r=a = Hθ,e|r=a

−1
a

∂Φi

∂θ

∣∣∣∣
r=a

= −1
a

∂Φi

∂θ

∣∣∣∣
r=a∑

l

Ala
l−1P ′l (cos θ) =

∑

l

(Cla
−l−2 + Dδl,1)P ′l (cos θ)

where P ′l (cos θ) = d
dθ P ′l (cos θ). Normal B-component:

Bθ,i|r=a = Bθ,e|r=a

−µ
∂Φi

∂r

∣∣∣∣
r=a

= −µ0
∂Φi

∂r

∣∣∣∣
r=a

0 =
∑

l

(
(−l − 1)Cla

−l−2 + Dδl,1)
)
Pl(cos θ)

Far away: ẑB0 = −µ0∇Φe(r →∞, θ) = −µ0D, thus D = −B0
µ0

.

From the boundary conditions and the independence of the Pl and P ′l it then follows

Ala
l−1 = (Cla

−l−2 − B0

µ0
δl,1) for l = 1, 2, 3...

(−l − 1)Cla
−l−2 =

B0

µ0
δl,1 for l = 0, 1, 2, 3...

Thus, from the second and then the first line it follows

Cl =

{
0 , l 6= 1
−a3B0

2µ0
, l = 1

and Al =
{

0 , l 6= 1
−3B0
2µ0

, l = 1



(For l = 0, which is missing from the first boundary condition, we argue that Φ must be continuous across
r = a; from there it follows A0 = 0)

Result:

Φi(r, θ) = −3B0

2µ0
r cos θ , r < a

Φe(r, θ) =
(
− B0

2µ0

a3

r3
− B0

µ0

)
r cos θ , r ≥ a

The term ∝ r−2 is that of a magnetic-dipole m = −2πa3B0
µ0

ẑ.

c):

H-field: H = −∇Φ, thus

H(r, θ) =
B0

µ0

3
2
ẑ , r < a

H(r, θ) =
B0

µ0

{
ẑ− 1

2
a3

r3

(
2 cos θr̂ + θ̂ sin θ

)}
, r ≥ a

B-field: B = µH, thus

B(r, θ) = 0 , r < a

B(r, θ) = B0

{
ẑ− 1

2
a3

r3

(
2 cos θr̂ + θ̂ sin θ

)}
, r ≥ a

Magnetization M : M = 1
µ0

B−H, thus

M = −3B0

2µ0
ẑ , r < a

M = 0 , r ≥ a

The dipole moment of the sphere thus is m = −B0
µ0

3
2

4π
3 a3ẑ = − 2πB0a3

µ0
ẑ, in accordance with the previously

found value.

Magnetization currents: There is no volume current, because −∇ ·M = 0 everywhere. The surface current
density is

M× n̂ = −3B0

2µ0
ẑ× n̂ = −3B0

2µ0
sin θφ̂



B=0

Far away: =BB z0 Far away: =(B / )H z0 0m

H z=(3B /2 )0 0m

B-Field H-Field

z

Figure 1: Sketches of the B-(left) and H-fields (right).



Problem 3 20 Points

a) Refering to the homework problem Jackson 7.3 and the drawing on the posted solution, we refer to the
complex electric field of the upward incident wave at the lower interface as E0, that of the upward interior
wave at the lower interface as E+, that of the downward interior wave at the lower interface as E−, that
of the transmitted wave at the upper interface as Et, and that of the reflected wave at the lower interface
as Er. Analogous definitions for the H-fields apply. Directions of positive electric field are out of the
plane, directions of positive H-fields of up-going waves are to the right, and directions of positive H-fields of
down-going waves are to the left.

For normal incidence, the boundary conditions for the tangential E-component at the lower interface, for
the tangential H-component at the lower interface, for the tangential E-component at the upper interface
and for the tangential H-component at the upper interface are, in that order,

E+ + E− = E0 + Er (1)

n(E+ − E−) = E0 − Er (2)

E+ exp(iφ) + E− exp(−iφ) = Et (3)

n(E+ exp(iφ)− E− exp(−iφ)) = Et (4)

where φ = kd = ωnd
c0

= 2πnd
λ0

with vacuum wavelength λ0 and speed of light c0. From the difference and sum
of Eqs. 1 and 2 we find

E+ =
1
2

(
E0

n + 1
n

+ Er
n− 1

n

)
(5)

E− =
1
2

(
E0

n− 1
n

+ Er
n + 1

n

)
(6)

Inserting into the difference of Eqs. 3 and 4 yields

E+(1− n) exp(iφ) + E−(n + 1) exp(−iφ) = 0

−E0(n2 − 1) exp(iφ)− Er(n− 1)2 exp(iφ) + E0(n2 − 1) exp(−iφ) + Er(n + 1)2 exp(−iφ) = 0
Er

E0

[
(n + 1)2 exp(−iφ)− (n− 1)2 exp(iφ)

]− (n2 − 1) [exp(iφ)− exp(−iφ)] = 0

Er

E0

[
4n cos φ− 2i(n2 + 1) sinφ

]− 2i(n2 − 1) sin φ = 0

Er

E0
=

i(n2 − 1) sin φ

2n cos φ− i(n2 + 1) sin φ

(7)

The intensity reflectivity, R = Er

E0

(
Er

E0

)∗
, thus is

R =
(n2 − 1)2 sin2 φ

4n2 cos2 φ + (n2 + 1)2 sin2 φ



R =
(n2 − 1)2 sin2 φ

4n2 + (n2 − 1)2 sin2 φ

(8)

The intensity transmission coefficient T is, due to energy conservation, T = 1−R,

T =
4n2

4n2 + (n2 − 1)2 sin2 φ
.

Note 1: The transmission coefficient can be obtained independently. For instance, “Eq. 3 + 1
n Eq. 4 ” and

“Eq. 3 − 1
n Eq. 4 ” and subsequent use of Eq. 5 or Eq. 6 yield

Et

E0
=

(
1 +

Er

E0

(
n− 1
n + 1

))
exp(iφ) thus

Er

E0
=

(
Et

E0
exp(−iφ)− 1

)(
n + 1
n− 1

)

Et

E0
=

(
1 +

Er

E0

(
n + 1
n− 1

))
exp(−iφ) thus

Er

E0
=

(
Et

E0
exp(iφ)− 1

)(
n− 1
n + 1

)

Equating the two expressions on the very right yields the above result for T .

Note 2: Defining c = exp iφ, the boundary conditions can be written as




1 1 −1 0
1 −1 1

n 0
c c∗ 0 −1
c −c∗ 0 − 1

n







E+
E0
E−
E0
Er

E0
Et

E0


 =




1
1
n
0
0




Development using the one of the two rightmost columns, the determinant in easily found to be D =
4
n cos φ− 2i

(
1 + 1

n2

)
sin φ.

Also, the determinant

D3 =

∣∣∣∣∣∣∣∣




1 1 1 0
1 −1 1

n 0
c c∗ 0 −1
c −c∗ 0 − 1

n




∣∣∣∣∣∣∣∣
= 2i

(
1− 1

n2

)
sin φ

and

D4 =

∣∣∣∣∣∣∣∣




1 1 −1 1
1 −1 1

n
1
n

c c∗ 0 0
c −c∗ 0 0




∣∣∣∣∣∣∣∣
= − 4

n

Then, R = D3
D

(
D3
D

)∗
and T = D4

D

(
D4
D

)∗
. Results see above.



Note 3: The results can also be obtained by infinite sums. For instance, defining φ = 2π 2nd
λ0

and using field
transmission and reflection coefficients given by Eq. 7.39 for i = i0 = 0 it is

Et = E0

[
4n

n + 1

2 ∞∑
m=0

{
exp(i

φ

2
)
(

1− n

1 + n

)}2m
]

This is a geometrical sum with result

Et

E0
=

4n

(n + 1)2 − exp(iφ
2 )(n− 1)2

which is the same as shown above. A similar sum can be written down for Er

E0
.

Sketch. R alternates between zero and
(

n2−1
n2+1

)2

. Zero reflection occurs when φ = mπ with integer m, and

peak reflection when φ =
(
m + 1

2

)
π. The reflection minimum at φ = 0 - note that φ = 0 corresponds to

vanishing thickness of the layer - can be explained by the phase-jump of π upon reflection at an optically
denser medium. The phase jumps occurs even for infinitesimally small layer thickness.

d/ = /(2 )l f p
0 0.5 1.0 1.5 2.0

0

(n -1)2 2

(n +1)2 2

4n2

(n +1)2 2

1

T

R

Figure 2: Sketch of the intensity reflection coefficient R and transmission coefficient T .

b): The refractive indices n+ and n− correspond to wavenumbers k± = ω
c n±, respectively. Thus, for waves

propagating in the z-direction the complex electric field is of the form

E(z) = E+ε̂+ exp(ik+z) + E−ε̂− exp(ik−z) ,

with circular unit vectors ε̂± = 1√
2
(x̂ ± ŷ), where we have chosen the unit vectors of linear polarization as

ε1 = x̂ and ε2 = ŷ).



The field amplitudes in the circular basis, E+ and E−, follow from the condition that the E-field is x̂-polarized
at z = 0, i. e. for z = 0

E = E0x̂ = E+ε̂+ + E−ε̂− =
1√
2

[x̂(E+ + E−) + iŷ(E+ − E−)]

Thus, 1√
2
(E+ + E−) = E0 and E+ = E− ⇒ E+ = 1√

2
E0.

The complex electric field vs. z thus is

E(z) =
1√
2
E0 [ε̂+ exp(ik+z) + ε̂− exp(ik−z)] .

Defining k = 1
2 (k+ + k−) and ∆k = (k+ − k−), it is seen that k± = k ± ∆k

2 , and φ(z) = ∆k
2 z

E(z) =
1√
2
E0 exp(ikz)

[
ε̂+ exp

(
i
∆k

2
z

)
+ ε̂− exp

(
−i

∆k

2
z

)]

=
1
2
E0 exp(ikz) [x̂ (exp(iφ) + exp(−iφ)) + iŷ (exp(iφ)− exp(−iφ))]

= E0 exp(ikz) [cos φx̂− sin φŷ]

= Ẽ0(z) [cos φx̂− sin φŷ]

There, the field amplitude Ẽ0(z) has constant magnitude E0 and includes the average spatial phase shift
exp(ikz). The polarization is always linear. The polarization angle varies linearly in z and amounts to
k−−k+

2 z vs. the x-axis. Such a polarization rotation is seen, for instance, in the Faraday effect.

Note. In any method used, it first needs to be established that the complex amplitudes Ex and Ey have
zero or π phase difference at any location z. Then, it is known that the polarization is always linear. Only
then can the magnitudes of Ex and Ey (and the phase difference, zero or π) be used to find the angle of
linear polarization.


