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Problem 1.3 5 Points

a): By symmetry, the solution must be of the form ρ(x) = ρ(r) = Qδ(r − R)f , with a constant f to be
specified by the condition

Q =
∫

ρ(r)4πr2dr =
∫

Qδ(r −R)f4πr2dr = Qf4πR2 . (1)

Thus, ρ(r) = Qδ(r−R)
4πR2 .

b): By symmetry, the solution must be of the form ρ(x) = ρ(r) = λδ(r − b)f , with a constant f to be
specified by the condition

λ =
∫

ρ(r)2πrdr =
∫

λδ(r − b)f2πrdr = 2λfπb . (2)

Thus, ρ(r) = λδ(r−b)
2πb .

c): By symmetry, the solution must be of the form ρ(x) = ρ(r, z) = δ(z)Θ(R − r)f(r). There, Θ is the
step function, and f(r) a function specified by a normalization condition that describes how much charge is
supposed to be on a ring with radius r and radial thickness dr (for r < R):

Q
2πrdr

πR2
=

∫

z

ρ(r, z)2πrdzdr =
∫

z

δ(z)f(r)2πrdzdr = f(r)2πrdr . (3)

Thus, ρ(r, z) = Qδ(z)Θ(R−r)
πR2 .

d): By symmetry, the solution must be of the form ρ(x) = ρ(r, θ) = δ(cos θ)Θ(R − r)f(r), where f(r) is a
function specified by a normalization condition that describes how much charge is supposed to be on a shell
with radius r and radial thickness dr (for r < R):

Q
2πrdr

πR2
=

∫

cos θ,φ

ρ(r, θ)r2dφd cos θ dr = 2π

∫

cos θ

δ(cos θ)f(r)r2d cos θ dr = 2πf(r)r2dr . (4)

Thus, ρ(r, cos θ) = Qδ(cos θ)Θ(R−r)
πR2r .



Problem 1.5 5 Points

Method 1: Consider first the case r > 0. Then, the expression

ρ−(r) = −ε0∆Φ(r) = − q

4π
∆

exp(−αr)
r

(1 +
αr

2
) (5)

is well defined, and yields

ρ−(r) = − q

4π

1
r
∂2

r exp(−αr)(1 +
αr

2
) = −qα3

8π
exp(−αr) . (6)

For r → 0, it is Φ(r) → q
4πε0r and ρ+(r) = − q

4π ∆ 1
r = qδ3(r) = q δ(r)

4πr2 .

Obviously, ρ−(r) accounts for the electron and ρ+(r) for the proton, and the total charge density is the sum

ρ = q(δ3(r)− α3

8π exp(−αr)) = q
8π (2δ(r)

r2 − α3 exp(−αr)) .

Method 2: Write exp(−αr)
r (1 + αr

2 ) as a product of functions f(r) = 1
r and g(r) = exp(−αr)(1 + αr

2 ), and
use the product rule ∆(fg) = f∆g + g∆f +2∇f ·∇g. All derivatives are found to be well behaved at r = 0,
except ∆f , which equals −4πδ3(r). Considering that, the calculation confirms the result of method 1.

You may verify that the total charge
∫

ρ(r)d3r = 0, which must be the case.



Problem 1.5 5 Points

How to calculate the capacitance of a conductor pair:

• Assume charges ±Q on conductors.

• Find E(x) using a method of your choice (often Gauss’s law).

• Calculate V = − ∫ 2

1
E(x) · dl between the two conductors.

• C = |QV |.

a): The electric field is E = σ
ε0

= Q
Aε0

. The voltage V that results from the simple line integral is V = Qd
Aε0

.
Thus, the capacitance is

C = ε0A
d .

b): The electric field is E = Q
4πε0r2 r̂, and

V = −
∫ 2

1

E(x) · dl = −
∫ r=b

r=a

Q

4πε0r2
r̂ · r̂dr =

Q

4πε0
(
1
b
− 1

a
) , (7)

Thus, C = 4πε0
ab

b−a .

c): The electric field is, in cylindrical coordinates, E = Q
2πε0Lr r̂, and

V = −
∫ 2

1

E(x) · dl = −
∫ r=b

r=a

Q

2πε0Lr
r̂ · r̂dr =

Q

2πε0L
ln(

b

a
) , (8)

Thus, C = 2πε0L
1

ln( b
a )

, and the capacitance per length is 2πε0
1

ln( b
a )

.

d): 6.39 mm and 113 km, respectively. That means, for practical purposes the capacitance per length of a
coax cable cannot be made much smaller than a few 10−11F/m.



Problem 1.11 5 Points
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Problem 1.11, Method 1 (enlightning but a little cumbersome):

The point of interest is located at the origin of a cartesian coordinate system the xy-plane of which defines
the tangent plane to the curved surface (at the point of interest). Further, the directions of the x- and
y-axes are such that locally the curved surface can be described as the set of points with coordinates
S(x, y) = xx̂ + yŷ − ( 1

2Rx
x2 + 1

2Ry
y2)ẑ. It has been discussed in class that it is always possible to find

orthogonal coordinate axes on the tangent plane that allow such a parametrization of the curved surface.
For the situation depicted in the figure, it would be Rx > 0 and Ry > 0. Due to the orthogonality of x̂ and
ŷ, a surface element with side lengths dx and dy on the curved surface has the area da = dx dy.

At a location S(x, y) on the curved surface, a normal vector to the plane is ∂S
∂x × ∂S

∂y = x
Rx

x̂+ y
Ry

ŷ+ ẑ. Using
this fact, it can be seen that an area element da′ = dx′ dy′ located at a height dz above da, constructed as
shown in the figure, will have the property that the “sidewalls” of a pillbox with da′ and da as upper and
lower surfaces are orthogonal to the curved surface. Since the electric field, depicted in red in the figure,
also is orthogonal to the surface, the electric flux through the sidewalls is zero. Due to Gauss’s law, the
fluxes through da and da′ must be equal and opposite. Considering that the field is (anti)parallel to both
vectors da and da′, it follows that E′da′ = Eda, with E and E′ being the field magnitudes on da and da′,
respectively.

Simple geometry apparent in the figure yields dx′ = dx(1+ dz
Rx

) and dy′ = dy(1+ dz
Ry

). Thus, for infinitesimally
small dx, dy and dz it is da′ = (1 + dz

Rx
+ dz

Ry
)da, and

E′ = E
da

da′
= E(1 +

dz

Rx
+

dz

Ry
)−1 = E(1− dz

Rx
− dz

Ry
) (9)

Thus,

1
E

E′ − E

dz
=

1
E

∂E

∂n
= −

(
1

Rx
+

1
Ry

)
q.e.d. (10)

Note: for the case depicted in the figure, both principal radii are > 0, and consequently ∂E
∂n < 0, as expected.



Problem 1.11, Method 2: (“cleanest” proof):

The electric field is (anti)parallel to both vectors da and da′ of the lower and upper planes in the figure,
respectively. It follows from Gauss’s law that E′da′ = Eda, with E and E′ being the field magnitudes on da

and da′.

To find da, refer to the points defined in the figure and set A = S(0, 0) = 0, B = S(dx, 0) = dxx̂− 1
2Rx

dx2ẑ,
and C = S(0, dy) = dyŷ− 1

2Ry
dy2ẑ. Then, in lowest order of dx and dy it is da = |(B−A)×(C−A)| = dx dy.

To find da′, we need to determine the points A′, B′, C′ that lie at a distance dz above the points A,
B, C. Thereby, “above” means that the lines A′ − A etc. are parallel to the position-dependent normal
vectors n̂ of the curved surface. The normal vectors are n̂(x, y) = ∂S

∂x × ∂S
∂y = x

Rx
x̂ + y

Ry
ŷ + ẑ. Note that

|n̂(x, y)| = 1, up to second- and higher-order corrections. It is thus found A′ = A′ + dzn̂(0, 0) = dzẑ,
B′ = (dx + dx dz

Rx
)x̂ + (dz − dx2

2Rx
)ẑ, and C′ = (dy + dy dz

Ry
)ŷ + (dz − dy2

2Ry
)ẑ. Then, in first order of dx and dy

it is found that da′ = |(B′ −A′)× (C′ −A′)| = dx dy
(
1 + dz

Rx
+ dz

Ry

)
. It follows

E′ = E
da

da′
= E(1 +

dz

Rx
+

dz

Ry
)−1 = E(1− dz

Rx
− dz

Ry
) (11)

and

1
E

E′ − E

dz
=

1
E

∂E

∂n
= −

(
1

Rx
+

1
Ry

)
q.e.d. (12)



Problem 1.11, Method 3: (fast, less enlightning):

Using the coordinate system in the figure, at location S(x, y) on the curved surface the normal vector to the
plane is ∂S

∂x × ∂S
∂y = x

Rx
x̂ + y

Ry
ŷ + ẑ. Since we are only interested in the local behavior in the vicinity of the

origin, x ¿ Rx and y ¿ Ry, and the length of the normal vector is 1, with corrections of order (x/Rx)2

and (y/Ry)2. Thus, the electric field on the surface has, locally, a form E(x, y) = E
(

x
Rx

x̂ + y
Ry

ŷ + ẑ
)

with
locally constant magnitude E. At the origin, we therefore have

∂Ex

∂x
=

E

Rx
and

∂Ey

∂y
=

E

Ry
. (13)

Noting that the field is normal to the curved surface, it also is

∂Ez

∂z
=

∂E

∂z
=

∂E

∂n
(14)

From ∇ ·E = 0 it then follows

∂Ez

∂z
=

∂E

∂n
= −

(
∂Ex

∂x
+

∂Ey

∂y

)
= −E

(
1

Rx
+

1
Ry

)
(15)

and

1
E

∂E

∂n
= −

(
1

Rx
+

1
Ry

)
q.e.d. (16)



Problem 1.12 5 Points

We consider a volume V limited by a conducting surface ∂V . For volume and surface charge densities ρ(x)
and σ(x) the potential is Φ(x), while for ρ′(x) and σ′(x) it is Φ′(x).

It is ρ(x) = −ε0∆Φ(x), and ∂Φ
∂n = σ

ε0
(with n̂ pointing from the volume into the conductor). Corresponding

equations for the primed quantities apply. The reciprocation theorem follows from these facts and Green’s
2nd identity:

∫

V

ρΦ′d3x +
∫

∂V

σΦ′da =

−ε0

∫

V

(∆Φ)Φ′d3x + ε0

∫

∂V

∂Φ
∂n

Φ′da =

(by Green′s 2nd identity)

−ε0

∫

V

Φ(∆Φ′)d3x + ε0

∫

∂V

Φ
∂Φ′

∂n
da =

∫

V

ρ′Φd3x +
∫

∂V

σ′Φda q.e.d.



Electric quadrupole 5 Points

An electric quadrupole consists of two dipoles, a dipole p located at r = b/2 and a dipole -p located at
r = −b/2. The orientation of p relative to b can be arbitrary. Find the potential at a location x in the limit
that b → 0 with p b remaining constant and both p and b maintaining their direction. Write the potential
in the form

V =
∑

ij

Qijxixj/x5 , (17)

and express the elements of the quadrupole tensor, Qij , in terms of p and b.

You may use the fact that the potential of an idealized dipole at location x′ is given by

Φdip(x) =
1

4πε0

p · (x− x′)
|x− x′|3 (18)

Solution:

The potential is

Φ(x) =
p

4πε0
·
(

(x− b/2)
|x− b/2|3 −

(x + b/2)
|x + b/2|3

)
(19)

Using the expansion

x+a
|x+a|3 =

∑
i

xi+ai

|x+a|3 x̂i ≈ ∑
i

(
xi

|x|3 + a · ∇ xi

|x|3
)

x̂i

= x
|x|3 +

∑
i,j aj

(
∂

∂xj

xi

|x|3
)

x̂i = x
|x|3 +

∑
i,j aj

x2δij−3xixj

x5 x̂i

(20)

with a = ±b/2 we can expand Φ(x) as

Φ(x) ≈ − p
4πε0

·
(∑

i,j bj
x2δij−3xixj

x5 x̂i

)
= 1

4πε0

∑
i,j pibj

3xixj−x2δij

x5

= 1
4πε0

({∑
i,j pibj

3xixj

x5

}
− x2

x5 p · b
}

= 1
4πε0

∑
i,j

xixj

x5 {3pibj − p · bδij}
=

∑
i,j Qij

xixj

x5

(21)

with quadrupole coefficients Qij = 1
4πε0

(3pibj − p · bδij) .

Total 30 Points


