Instructor: Jianming Qian

Due date: November 15, 2001
Physics 505: Solutions to Assignment #9

Problem 6.4
(a) Since the sphere is uniformly magnetized with magnetic moment m = ATR*M /3, the magnetization is therefore
M. The magnetic field inside the sphere is then given by Fq. (5.105):
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Given the Ohm’s law in a moving conductor J = U(E + U % E) and the fact that there is no current flowing inside
the conductor, the electric field inside the conductor must be:
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Here we have chosen Spherical and Cartesian coordinates with their origins at the center of the sphere and their
z—axis along the magnetization direction. Therefore, the volume charge density is then given by the Coulomb’s law:
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The total volume charge
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Note that rotating electric charges will result in an additional magnetic field. However, this field is suppressed by a
factor of v/c compared with the field from magnetization and therefore ignored. (¢) The surface charge distribution
is ¢—symmetric and therefore can be written as
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Since the conductor is uncharged:
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From £ = -7 x B = —(& x ) x B), we note that the electric field along the z—axis is zero and therefore the scalar

potential is constant along the axis. For a point (r < R) inside the sphere, the potential due to the volume charge is
(can be calculated in a variety of ways such as using Gauss’s law to calculate the field first and then integrate):
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On the z—axis:
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The potential due to the surface charge for a point on the z—axis:
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Note that




Consequently
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The combined potential along the z—axis:
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®(z) is independent of z only if
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The surface charge density is then
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(b) Multipole moments gg,,, have contributions from both volume and surface charge distributions:
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Since o(f) is even in cos@, the integral over cos @ vanishes for odd ¢ values. Furthermore, the monopole moment
also vanishes as a result of zero net charge on the sphere. Therefore, quadrupole moments are the lowest order non-
vanishing moments. The quadrupole moment tensor has contributions from both the volume and the surface charge
distributions:
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Due to the symmetry in ¢ and in 2, the only non-vanishing components are Q1,22 and Q33.
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The ¢—symmetry of charge distribution and the fact that the tensor is traceless lead to:
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(d) The electromotive force
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Additional stuff for my record
The potential due to the surface charge
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The total potential outside the sphere (r« = a and r~ =7):
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The electric field outside the sphere:
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The total potential inside the sphere (ro =7 and -~ = a):
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Problem 6.8
In an external uniform electric field F, the sphere is uniformly polarized with the polarization given by Eq. (4.57):
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Therefore, the bound volume and surface charge densities are:
pp=-V-P=0, o0,=P-7

where 71 is the normal vector on the sphere surface. Since the sphere is rotating, the bound surface charge results an
effective surface current with density:
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Comparing with the effective surface current density Ky = M x 7 due to magnetization M, we identify a(ﬁ -11)d as
an effective magnetization. Therefore, the effective magnetic surface charge density
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The magnetic scalar potential @57 (7) (Eq. (5.100)):
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Using the identity:
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and expanding 1/|7 — 7 | using spherical harmonics, the integral becomes:
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where 7~ = min(r,a) and - = max(r, a). Therefore, the scalar potential
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The magnetic field H can be determined from @, (7):
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What if the electric field is along the rotational azis?
The effective magnetic surface charge density:

or(0,0) = a(B-7) (@ 7) = 3eo :;2600 aw By cos® 0




1 oM €— € 1 212
Py (7) = — —da’ = Sweg By ¢ — + = =5 Py(cos f)
w(7) Ar |7 — | T e 0{r> +5r‘°; 2(cost)

Problem 6.11
(a) The momentum conservation equation
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implies that the projection of the momentum flow along the direction of 7 is given by —T 7% where T is the Maxwell
stress (momentum) tensor:
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Physically —T; is the rate at which the i*"-component of the momentum is crossing a unit area in the j** —direction.

In a Cartesian coordinate system with the z—axis along the wave propagation direction and E along the x—direction:
E=FE: H=Hj

The i*" component of the linear momentum flowing into the surface (in the direction 7 = 2) per unit time per unit
cross section is therefore
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In the chosen coordinate system, the only non-vanishing component is p,. The force exerted on the wave from the
surface per unit area (according to Newton’s second law):
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Therefore, the radiation pressure on the surface (Newton’s third law):
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which is the energy density in the electromagnetic wave.

Problem 6.13
(a) Note: only need to work out the first non-zero terms in electric/magnetic fields. To a good approximation, the
conductors are at equipotential and have uniform surface charge distributions. Choose a Cartesian coordinate system
with its origin at the center of the capacitor, the x—axis parallel to the edge a and pointing to the current feed, the
y— axis perpendicular to the two planes. Let Q(t) = Qoe ** be the total charge on the bottom plate, the electric
field in between the plates is therefore
E(F, 1) = ﬂy — l@eﬂ'wt@
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The charge on the 2’ < x portion of the bottom plate is:
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The surface current density



Note that K is maximum at z = /2 and zero at © = —a/2 as expected. In between, the conduction current looses
its strength to the displacement current. (b) The electric energy density and energy
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The magnetic energy density and energy
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The reactance
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where L = poad/3b and C = egab/d. Therefore, X is equivalent to the reactance of a capacitor C' connecting in series
with an inductor L.



