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Abstract This paper focuses on learning the dynam-
ics of time delay systems from trajectory data and
proposes the use of the maximal Lyapunov exponent
(MLE) as an indicator to describe the richness of
the training data. Neural networks with trainable time
delays are utilized to construct neural delay differential
equations, and a learning algorithm based on network
simulation loss is proposed to learn the delays and the
nonlinearities in the right-hand side of these equations.
We demonstrate that with the proposed networks and
learning algorithm, the delay and the nonlinearity in
the Mackey–Glass system can be learned from a single
trajectory of sufficient richness.We also show that hav-
ing larger MLE results in better generalizability of the
trained networks. Namely, a network trained on a sin-
gle chaotic trajectory obtained for a given delay value
can be used to predict the dynamics for other delay val-
ues, where the system possesses stable/unstable equi-
libria, limit cycle oscillations, and/or chaotic behav-
ior. We also test the learning algorithm on other sys-
tems including a climate model with multiple delays
and external forcing. In this case, again, a time delay
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neural network can correctly learn the delays and the
nonlinearities from a single chaotic trajectory, and the
corresponding neural delay differential equation gives
good short-term predictions.
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1 Introduction

In recent years, data-driven methods have been applied
to dynamical systems, and among those methods,
neural networks have shown their power in function
approximation [1,2]. However, they are also among the
most criticized methods since they involve tremendous
number of parameters, which makes their analysis dif-
ficult [3]. Moreover, generalizability of the trained net-
work can be an issue if “big data” are not available.
That is, neural networks can have poor performance
outside the domain of the training data. Recent works
made improvement by embedding prior knowledge—
gained from first principle models—into the network
design; see [4–8] for instance.

Different from the classification and regression
problems, which normally aim to obtain maps between
individual samples, learning dynamical systems
involves sequential data referred to as trajectories. In
order to learn the underlying dynamics, neural net-
works should consider the time dependency in the data.
In discrete time, recurrent neural networks such as long
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short-term memory (LSTM) networks [9] or residual
neural networks (ResNet) [10], which consist of many
layers, can be used to represent the information flow
going through time. In continuous time, neural ordi-
nary differential equations (NODEs) [11–13] directly
model the underlying dynamics using a neural network.
These networks capture the right-hand side of differ-
ential equations, that is, their input is typically the state
of a dynamical system, while their output is the time
derivative of the state.

Adding time delays to neural networks as additional
parameters can increase their capability of approximat-
ing the dynamics while keeping the network structure
simple. Neural delay differential equations (NDDEs)
[14,15] were originally introduced to address the prob-
lem of intersecting trajectories, as the correspond-
ing dynamical system has infinite-dimensional state
space. It was also shown that NDDEs can be used
to capture the latent dynamics of complex systems
[16,17]. The theoretical background of time delay sys-
tems has a rich history [18–24]. Also, delays appear
in many real-world applications including cryptogra-
phy [25,26], epidemiology [27,28], ecology [29], cli-
mate models [30], machining processes [31], vehicle
dynamics [32,33], and transportation systems [34,35].
Incorporating time delays into the data-driven models
can help to interpret the models [36,37] and generalize
formultiple scenarios without requiring additional data
[38].

In this work, we utilize time delay neural networks
with trainable delay to represent neural delay differ-
ential equations. We also put forward a new delay
learning algorithm, which can simultaneously learn the
time delay and the nonlinearity from trajectory data.
We demonstrate that using such framework, complex
dynamics can be learned via neural networks of sim-
ple structure. Additionally, we show that those learned
delays are meaningful and they help neural networks
to generalize better, even when the training data is lim-
ited. In particular, the dynamics can be learned from
a single trajectory generated for one delay value, such
that the network gives accurate predictions for a wide
range of delay values.

Apart from showcasing successful implementation
of our learning algorithm, we show that the maximal
Lyapunov exponent (MLE) [39] canbeutilized to quan-
tify the richness of the data. Time delay systems often
exhibit qualitative changes in behavior as the delay is
varied.For instance, the systemmay have a stable equi-

Fig. 1 Conceptual diagramonhow themaximalLyapunovexpo-
nent of the data used for learning affects the generalizability of
the neural delay differential equation (NDDE)

librium (MLE < 0) for small delay values and a sta-
ble limit cycle (MLE = 0) for larger delay values. One
may study such qualitative changes using bifurcation
analysis [40]. For some systems, changing the delay
leads to chaotic behavior (MLE > 0) with trajectories
covering a large part of the state space [41]. Figure1
illustrates the MLE of such a system as a function of
the delay τ (blue curve). At each delay value, we have
a single trajectory as the training data and we learn
the system dynamics from that trajectory. The MLE of
learned network is shown by the orange curve.With the
rich dynamics indicated by the high MLE, the trained
network could also reproduce the systemdynamics bet-
ter in terms of delays, nonlinearities, and MLE. The
key idea is to train network on rich data (with positive
MLE), so that it can predict the behavior for other delay
values (for which the MLE may be positive, negative
or zero) without retraining.

The rest of the paper is organized as follows. In
Sect. 2, we introduce time delay systems and the tools
to compute Lyapunov exponents for such systems. In
Sect. 3,we introduce neural delay differential equations
with trainable delays, while in Sect. 4, we construct the
loss function and introduce the training algorithm. In
Sect. 5, we apply the algorithm to learn the dynamics of
a classical example, namely theMackey–Glass system,
generate the bifurcationdiagram for the learned system,
and compute the maximal Lyapunov exponent to eval-
uate the generalizability of the network. We also show
that the algorithm is applicable for a climate model
which contains multiple delays as well as external forc-
ing in Sect. 6. We summarize the results and provide
future research directions in Sect. 7.
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2 Lyapunov exponents for time delay systems

Lyapunov exponents represent the rate of separation
of infinitesimally close trajectories. Positive maximal
Lyapunov exponent (MLE) λmax > 0 is used to char-
acterize the sensitivity to initial conditions in chaotic
dynamical systems [39]. Thus, we use theMLE to char-
acterize the richness of the dynamics. In this section,we
introduce how to calculate theMLE for time delay sys-
tems. For more details about the numerical algorithms;
see [42].

Consider a nonlinear autonomous time delay system
whose time evolution is determined by

ẋ(t) = G(xt ), (1)

where x ∈ R
n and xt (ϑ) = x(t + ϑ), ϑ ∈ [−τmax, 0]

with maximum delay τmax > 0. That is, xt ∈ X where
X denotes the space of continuous functions
X = C([−τmax, 0],Rn) and G : X → R

n is a func-
tional. For initial history x0, let us denote the solution
as ϕ(x0, t), that is, xt (ϑ) = ϕ(x0(ϑ), t). Then for ini-
tial history x0 + δx0, which is in the close vicinity of x0
for small ‖δx0‖, we have the solution ϕ(x0 + δx0, t).
The maximal Lyapunov exponent for the time delay
system (1) is defined as in [41]:

λmax = lim
t→∞ lim‖δx0‖→0

1

t
ln

‖ϕ(x0 + δx0, t) − ϕ(x0, t)‖
‖δx0‖ , (2)

where ‖δx0‖ = supϑ∈[−τmax,0] ‖δx0(ϑ)‖2 and the con-
dition for the existence of the limit is also given in [41].

By linearizing the autonomous nonlinear time delay
system (1) about a time-dependent solution, one may
obtain the linear nonautonomous system

ẋt = A(t)xt , (3)

with the time-dependent linear operatorA : R×X →X .
Then, by discretizing time, this infinite-dimensional
system can be reduced to a system of M + 1 nonau-
tonomous linear ordinarydifferential equations (ODEs):⎡
⎢⎢⎢⎣

ẋt (ϑ0)

ẋt (ϑ1)
...

ẋt (ϑM )

⎤
⎥⎥⎥⎦ = AM (t)

⎡
⎢⎢⎢⎣

xt (ϑ0)

xt (ϑ1)
...

xt (ϑM )

⎤
⎥⎥⎥⎦ , (4)

with mesh −τmax = ϑM < . . . < ϑ1 < ϑ0 = 0. The
simplest, uniform-mesh discretization uses ϑi = ih
with distance h = τmax/M between the mesh points;
see [38]. In this work, we use the Chebyshev mesh

ϑi = τmax

2

(
cos

( iπ
M

)
− 1

)
, (5)

which provides higher accuracy [24].
The Lyapunov exponents can then be calculated

using discrete QR method [42]. One can factorize the
fundamental matrix X (t) of equation (4), at a strictly
increasing sequence of time instances {tk} with t0 = 0:

X (tk) = Qk Rk, (6)

where Qk is an orthogonal matrix and Rk is an upper
triangular matrix. The matrix Rk can be expressed by
the product of a series upper triangularmatrices R j, j−1:

Rk =
( k∏

j=1

R j, j−1

)
R0. (7)

The matrix R j, j−1 is computed from factorizing the
solution ψt j−1(t) of the system

ψ̇t j−1(t) = AM (t)ψt j−1(t), t ∈ [t j−1, t j ], (8)

with initial condition ψt j−1(t j−1) = Q j−1, yielding

ψt j−1(t j ) = Q j R j, j−1. (9)

at time t = t j .
The Lyapunov exponents are then recovered as

λi = lim sup
k→∞

1

tk

k∑
j=1

ln[R j, j−1]i,i , (10)

where [R j, j−1]i,i , i = 1, . . . , M + 1 is the i-th diag-
onal entry of R j, j−1 [43]. When computing (10), one
should truncate the time at a large enough value tk = T
and choose a sufficiently large mesh size M in (4) to
obtain good approximation of λi for the nonlinear time
delay system.With larger T and larger M , the maximal
Lyapunov exponent λmax = λ1 can be representedwith
higher accuracy; see the evaluation in [42]. In thiswork,
the MLE λmax is obtained with T = 104 and M = 10.
These two parameters were chosen based on a balance
between approximation accuracy and computation effi-
ciency. Such computation of Lyapunov exponents is
also applicable for time delay systems with multiple
discrete delays and even distributed delays, as long as
the system can be linearized around a given solution.

3 Neural delay differential equations

System (1)withd discrete delays, 0≤τ1, . . . , τd ≤τmax,
can be written as

ẋ(t) = g(xt ), (11)
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wherext =
⎡
⎢⎣
x(t − τ1)

...

x(t − τd)

⎤
⎥⎦ ∈ R

nd andg : Rnd → R
n . In

order to capture the dynamics in equation (11), we
construct the neural delay differential equation anal-
ogously,
ˆ̇x(t) = net(x̂t ), (12)

with d delays, 0 ≤ τ̂1, . . . , τ̂d ≤ τmax, and
net : Rnd → R

n representing a time delay neural net-
work. Suppose the network has L layers with nonlin-
earity fl(·) in each layer l = 1, . . . , L . Let us denote
the input as zt0 and the output as z

t
L at time t . Then, we

have

ztL = net(zt0), (13)

where
zt1 = f1(W1zt0 + b1),

ztl = fl
(
Wlz

t
l−1 + bl

)
, l ≥ 2, . . . , L .

(14)

This network can be used to approximate the state
derivative of the delayed dynamical system by defining
ztL = ˆ̇x(t) and zt0 = x̂t , cf. (12) and (13).

Note that some of the delays can potentially have
the same value and they do not have to be in an ascend-
ing/descending order. Therefore, when the NDDE (12)
is used to approximate the dynamics of the time delay
system (11), knowing the number of delays in the
system is beneficial but not required [38]. Figure2a
illustrates a time delay neural network used to cap-
ture the right-hand side of an NDDE with discrete
delays, while panel (b) shows a block diagram illus-
trating the corresponding NDDE simulation. Belowwe
consider the time delay neural networks with trainable
delays. That is, apart from the weights Wl and biases
bl , l = 1, . . . , L in (14), we also learn the delays τ̂k ,
k = 1, . . . , d .

For example, an autonomous delay dynamical sys-
tem with one delay (d = 1) can be described by

ẋ(t) = g(x(t), x(t − τ)), (15)

Fig. 2 a Illustration of a time delay neural network constructed
to capture the dynamics of a neural delay differential equation
(NDDE) with a single delay. b Illustration of the simulation of
an NDDE

whose nonlinearity g(·) and delay τ may be unknown.
Our goal is to learn g(·) as well as τ from the data using
the NDDE

ˆ̇x(t) = net(x̂(t), x̂(t − τ̂ )), (16)

with trainable delay τ̂ . Control systems with state feed-
back can also be viewed as autonomous systems. For
example, the dynamical system ẋ(t) = f (x(t), u(t))
with delayed state feedback u(t) = k(x(t − τ)) yields

ẋ(t) = f
(
x(t), k(x(t − τ))

)
. (17)

When the nonlinear dynamics f (·, ·) of the system, the
feedback law k(·), and the delay τ are not known, we
need to learn these from trajectory data.

Due to the trainable delays in the networks and due
to the recurrent feature of network simulation, the time
delay neural network is able to take the time depen-
dency into consideration, while keeping the number of
parameters relatively low. Moreover, the neural net-
work (13) captures the dynamics of the delay dif-
ferential equation (12), and it can be analyzed using
tools from the dynamical systems and control liter-
ature. Additionally, with explicit delay parameters in
the input layer, the network is more interpretable and
generalizable. The trained delays and nonlinearities are
independent from each other, that is, the network does
not need to be retrained once the delays is changed.

4 Learning algorithm

In this section, we construct the loss function for net-
work training and illustrate the training algorithmbased
on discrete delays as demonstrated in Fig. 2a. For a
given initial history, which is obtained by linear inter-
polation from sampled data, one can solve the NDDE
with a chosen DDE solver. Then, the DDE solver can
be used to predict the state at time t as

x̂(t) = DDEsolver(net, xt0 , t), (18)

where the history function xt0(ϑ), ϑ ∈ [t0 − τmax, t0]
is approximated from data x(t0), x(t0−Δt), . . . ,
x(t0−τmax) and Δt denotes the sampling time.

In this work, we use the 4-step Adams–Bashforth
scheme with fixed simulation time step δt to obtain the
solution (18); see [44] for ODE implementation, and
Appendix A for DDE implementation. Note that the
time step δt can be smaller than the sampling time Δt
to achieve better accuracy. One may also discretize the
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DDE along the history and obtain simulation from the
resulting set of ordinary differential equations (ODEs);
see [38] for more details.

In order to measure the error between the simulation
and the data, we construct the simulation loss function

Lsim = 1

nH

H∑
j=1

n∑
i=1

(
x̂ (i)(t0+ jΔt)−x (i)(t0+ jΔt)

)2
,

(19)

where HΔt is the simulation horizon and x (i) denotes
the i-th component of the vector x ∈ R

n . Since the data
is sampled at t = t0 + jΔt , the network simulation is
also evaluated at the same time moments.

In order to train the network parameter θ , which
incorporates theweightsWl andbiasesbl , l = 1, . . . , L ,
and the delays τ̂k , k = 1, . . . , d in the time delay neural
network (13), we use adaptivemoment estimation [45].
This requires the calculation of the gradient ∂Lsim

∂θ
, that

is, ∂Lsim
∂Wl

, ∂Lsim
∂bl

, and ∂Lsim
∂τ̂k

. The gradient of the loss with
respect to delay τ̂k is given by

∂Lsim

∂τ̂k
= ∂Lsim

∂xt0(−τ̂k)

∂xt0(−τ̂k)

∂τ̂k
= ∂Lsim

∂xt0(−τ̂k)
ẋt0(−τ̂k).

(20)

Here, τ̂k is a continuous variable, so xt0(−τ̂k) and
ẋt0(−τ̂k) are approximated from the linear interpola-
tion of the history samples. Namely, one can express
any delay value as τ = ( j + α)Δt with j ∈ N and
α ∈ [0, 1), and approximate the state at t − τ as

x(t − τ) = x(t − ( j + α)Δt)

≈ (1 − α)x(t − jΔt) + αx(t − ( j + 1)Δt).
(21)

The state derivatives can be obtained as follow

ẋ(t − τ) ≈ x(t − jΔt) − x(t − ( j + α)Δt)

αΔt
(21)≈ x(t − jΔt) − x(t − ( j + 1)Δt)

Δt
,

(22)

whereEuler’smethod is used in the first approximation.
The gradients ∂Lsim

∂Wl
, ∂Lsim

∂bl
, and ∂Lsim

∂τ̂k
are calculated

via backpropagation, utilizing the automatic differen-
tiation through the DDE solver. Although the training
dataset may consist only one trajectory, it can be sep-
arated into shorter segments using the horizon HΔt
in (19) and the length of history τmax. The loss func-
tion (19) measures the difference between the data and

the trajectory generated by the neural delay differen-
tial equation for a particular initial history. When using
multiple segments, we define the cost function

L = 1

N

N∑
m=1

Lsim(xtm0 ), xtm0 ∈ S, (23)

where N is the number of segments (batch size) used
for one update and the set S contain the potential initial
histories in the training dataset.

In this work, we implement the training method
using the 4-step Adams–Bashforth scheme, together
with dlgradient and adamupdate from MAT-
LAB Deep Learning Toolbox. The sample code of
the NDDE solver with multiple delays is provided in
Appendix A and other essential codes for implementa-
tion of learning are provided in Appendices B and C.
In the adaptive moment estimation (adamupdate),
different learning rates were chosen for delays and
for the other parameters. In addition to the parame-
ter updates with the gradient information, we restrict
the delay value to be between 0 and τmax considering
the positivity of the delay and the length of memory.
The algorithm for multiple-delay learning is illustrated
in Algorithm 1.

5 Mackey–Glass dynamics

Nowweexamine theNDDEapproach and the proposed
learning algorithm when learning the dynamics of the
Mackey–Glass system [47], a scalar autonomous time
delay system modeled by the equation

ẋ(t) = βx(t − τ)

1 + (x(t − τ))δ
− γ x(t), (24)

withβ = 4, γ = 2, δ = 9.65.Thismathematicalmodel
is used to describe the complex behavior in physio-
logical systems with delayed effects, for example, the
control of arterial CO2 concentration and the regula-
tion of hematopoiesis. This is a classical time delay
system, known for the simplicity of its structure and
for the complexity of its behavior. It exhibits different
qualitative behaviors as the time delay τ is varied.

For a small delay, for instance, τ = 0.2, the sys-
tem has a stable equilibrium at x(t) ≡ 1, as shown in
Fig. 3a.As the delay increases, the equilibrium loses the
stability and a stable limit cycle rises, whose amplitude
grows with the delay. Such a stable limit cycle is shown
in Fig. 3b for τ = 0.5. Increasing the delay further,
the system becomes chaotic, see panels (c) and (d) for
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Goal:Learn θ = {Wl , bl , τ̂k}, l = 1, . . . , L , k = 1, . . . , d
from data.

– Choose the simulation horizon H , the simulation
time step δt , and the learning rates ητ and η for
delays and other parameters.

– Set the maximum iteration number qmax and the
maximum allowed delay τmax.

– Initialize θ0, i.e., initialize τ̂k uniformly between
[0, τmax], bl as zeros and Wl using Glorot initial-
ization [46]; see Appendix B for an example of
initialization code.

for q = 1, . . . , qmax do

– Randomly take N segments from the training data
such that the length of each segment depends on
horizon H .

– Simulate the NDDE with current weights, biases
and delays using dl_ddeab4.

– Calculate the cost L using (19) and (23).
– Back-propagate to get the gradients with respect

to parameters using dlgradient given in
Appendix A.

– Update θq from θq−1 using adamupdate and
impose positivity constraint to delays τ̂ ; see
Appendix C for example.

if q > 1 and Lq < Lq−1 then
θbest = θq

end
end
θ = θbest , evaluate the NDDE on testing datasets

Algorithm 1: Training algorithm for the time
delay neural network with simulation loss

τ = 1 and τ = 1.5. The qualitative changes in the sys-
tem behavior with the change of parameters are studied
using bifurcation analysis. The appearance and stabil-
ity change of equilibria and periodic orbits are usually
summarized in bifurcation diagrams; see alreadyFig. 7.

We use a time delay neural network with two hidden
layers, five neurons in each layer, tanh nonlinearity, and
one trainable delay to learn from four different datasets,
shown in Fig. 3. That is, the data generated by (24) is
captured by the NDDE

ˆ̇x(t)=W3tanh
(
W2 tanh

(
W1

[
x̂(t)

x̂(t−τ̂ )

]
+b1

)+b2
)
,

(25)

where W1 ∈ R
5×2, W2 ∈ R

5×5, W3 ∈ R
1×5, b1,

b2 ∈ R
5×1.

Note that the datasets shown in Fig. 3 are not com-
bined during training, i.e., only a single trajectory is
used in each case. By doing so, we examine the effect
of datasets in the training procedure as well as the

Fig. 3 Training datasets generated by the Mackey–Glass sys-
tem: each dataset contains one trajectory generated for a different
delay value using the initial history x0(ϑ) ≡ 0.3, ϑ ∈ [−τmax, 0]
sampled with time step Δt = 0.1. a–c Has the same length
Ttr = 15, while d has the length Ttr = 30 since the richer dynam-
ics takes more time to present

generalizability. The training horizon is chosen to be
H = 10, HΔt = 1 and the simulation time step in the
DDEsolver is δt = 0.01. The learning rate for weights
and biases is chosen to be 0.01. The learning rate for
delay is 0.01 for the limit cycle dataset (generated
at τ = 0.5) and for the chaotic datasets (generated at
τ = 1, 1.5), but it is 0.001 for the stable equilibrium
dataset (generated at τ = 0.2), because the target delay
value is smaller. The batch size N = 10 is used for
training, while the maximum number of iterations is
set to be 2000 for the datasets generated at τ = 0.5, 1
and 5000 for the datasets generated at τ = 0.2, 1.5.
The networks with smallest training loss along the iter-
ations are used as final trained network for prediction
and evaluation.

The training algorithm performs well on the all four
datasets. The trained neural network captures the tra-
jectory for the training data and accurately predicts the
future trajectory for a short time period. With a larger
simulation horizon HΔt , the network can be used to
predict the chaotic oscillations more accurately for a
longer period. However, using larger horizon signifi-
cantly increases the training time, and the prediction
error still increases in the longer term due to the sensi-
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Fig. 4 Learning the Mackey–Glass dynamics. a Training loss
along the iterations. b Learned delays along the iterations. c
Derivative prediction on test data. d Simulation prediction on
test data

tivity to initial conditions in chaotic systems. To exam-
ine the performance of the trained networks, we test
them for different initial histories and compare the
MLE of the data as with the MLE of the trajectories
given by the NDDE. We use bifurcation diagrams to
demonstrate that rich data (with positive MLE) yields
good generalizability.When the bifurcation diagram of
the approximated system matches the bifurcation dia-
gram of the original system, one may use the trained
NDDE outside the domain of training data.

There are cases when the number of delays in the
system is unknown. A demonstration of the developed
algorithm under such a scenario is shown in Fig. 4.
Here, we initially overestimate the number of delays to
be four while there is only one delay in the system. The
corresponding NDDE is now given by

ˆ̇x(t)=W3 tanh
(
W2 tanh

(
W1

⎡
⎢⎢⎣
x̂(t−τ̂1)

x̂(t−τ̂2)

x̂(t−τ̂3)

x̂(t−τ̂4)

⎤
⎥⎥⎦+b1

)+b2
)
,

(26)

where W1 ∈ R
5×4 and the dimensions of the other

weights and biases are the same as in (25). As a result,
some of the delays converge to the true value τ = 1,
while others converge to zero (representing the non-
delayed terms). The training loss and learned delays
are shown in panels (a) and (b), respectively. The dot-
ted line indicates the minimum training error where
the parameters used in the NDDE (25) are taken. The
direct network prediction of the derivative ˆ̇x and the
simulated state x̂ are shown as a function of time in

Fig. 5 Results when the networks are trained on the limit cycle
dataset τ = 0.5 (left) and the chaotic dataset τ = 1 (right). a, b
Learning the delays from the training data. c–f Comparison of
network performances on test data. g, h Absolute error between
ẋ and ˆ̇x in state space where the gray dots indicate training data

panels (c) and (d) as blue curves, in comparison with
the test data plotted as gray dots.

We show the learning path of the delay and the
performance of the trained networks (25) on test data
in Fig. 5. The performance of the network trained on
limit cycle data (generated at τ = 0.5) is presented in
orange on the left, and the performance of the net-
work trained on chaotic data (generated at τ = 1) is
presented in yellow on the right. Panels (a)–(b) show
how the delay value is learned along the training itera-
tions. In both cases, the delay starts from initial value
τ̂ = 0.5τ and approaches the correct delay value τ

through the iterations. Both networks are tested on ini-
tial history x0(ϑ) ≡ 0.9 that differs from the initial his-
tory x0(ϑ) ≡ 0.3 used for generating the training data;
see panels (c)–(f). One may observe from the phase

123



3512 X. Ji, G. Orosz

Table 1 Delays and maximal Lyapunov exponents of the orig-
inal Mackey–Glass system and the trained NDDEs for the four
datasets in Fig. 3 generated for initial history x0 ≡ 0.3, while
using mesh size M = 10 and truncation time T = 104

τ (DATA) 0.2 0.5 1 1.5

τ̂ (NDDE) 0.18 0.5 1 1.5

λmax (DATA) −0.66 −7.3 × 10−4 0.143 0.155

λmax (NDDE) −0.77 −4.7 × 10−5 0.140 0.153

portraits in panels (c) and (f) that both networks give
good predictions for the delay value they are trained at.

The trained NDDEs are also tested for another delay
value, without retraining, i.e., by keeping the same
trained weights and biases; see the phase portraits in
panels (d) and (e). The network trained on chaotic
data at τ = 1 can predict the limit cycle observed for
τ = 0.5, but the network trained on limit cycle data
fails to predict the chaotic behavior observed for τ = 1.
This indicates that the networks trained on datasets
with richer dynamics generalize better. Moreover, we
present the difference of the state derivative between
the original system and the NDDE in panels (g) and
(f). Observe that the network trained on chaotic data
τ = 1 has a better approximation of the nonlinearity,
as indicated by the blue color.

The richness of the training data affects the learning
performance. To evaluate the richness, we calculate the
MLE of the original data and compare it to the MLE
of the trajectories generated by the trained networks.
For the four networks trained on the datasets shown
in Fig. 3, the delays and the maximal Lyapunov expo-
nents are collected in Table 1. All networks fit their
corresponding training data; thus, the delays and the
MLEs are recovered by the NDDEs. The MLE and the
learned delay for the network trained on stable equi-
librium data are less accurate as most of the stable
trajectory is around the equilibrium, which makes the
learning difficult.

The computation of the MLE requires the simula-
tion of the system with a given initial history [42].
The computed MLEs are shown in Fig. 6 for differ-
ent time delays and for different initial histories. The
approximate MLEs of the Mackey–Glass system and
the learned NDDE are shown in the panel (a), as a func-
tion of the truncation time T for τ = 1.5 and history
x0 = 0.9. Both systems require a large truncation time
to obtain good estimates (convergence) on MLEs. The

Fig. 6 Maximal Lyapunov exponents computed for the
Mackey–Glass system and the trained NDDE. Panel a shows the
MLEs as a function of the truncation time T for delay τ = 1 and
history x0 ≡ 0.9. Panels b and c show the exponents at T = 104

for delays τ = 1 and τ = 1.5, respectively, while considering the
initial histories x0 ≡ c, c ∈ [0.1, 0.9]

MLEs are compared at T = 104 for different initial his-
tories and different delays in panels (b) and (c).Observe
that the NDDEs trained on chaotic data estimate well
the MLE of the true system regardless of the initial
history of the testing trajectory. One may also observe
slightly larger MLE in the case τ = 1.5 compared to
the case τ = 1.

To illustrate the generalizability of NDDEs, we gen-
erate the bifurcation diagrams using DDE-BIFTOOL
[48,49] and compare those to the bifurcation diagram
of the original Mackey–Glass system in Fig. 7. We
plot the peak-to-peak amplitude of the limit cycle
(xmax − xmin) as a function of delay and indicate the
stability/instability of limit cycles by green/red color.
The equilibrium x(t) ≡ 1 loses its stability via Hopf
bifurcation and a stable limit cycle appears at τ = 0.24.
The limit cycle undergoes a period doubling cascade
with the first two bifurcations located at τ = 0.61 and
τ = 0.84. Beyond τ = 0.87, the system has chaotic
attractor, which is indicated by gray shading in Fig. 7.
From panels (a) and (b), we can see that the NDDEs
with λmax ≤ 0 have poor generalization for delay val-
ues greater than the delay in the training data. Contrar-
ily, panels (c) and (d) demonstrate that the NDDEswith
λmax > 0 predict the appearance of Hopf and period
doubling bifurcations and capture the amplitude and
stability of the limit cycles for other delay values with-
out retraining. The network trained on data with larger
MLE (τ = 1.5 case) has better generalization, i.e., bet-
ter approximation of the bifurcation diagram.
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Fig. 7 Bifurcation diagrams of the NDDE learned from data at
τ = 0.2, 0.5, 1, 1.5 compared to the ground truth. The dashed
line indicates the underlying delay in the training data, and the
shaded area indicates where the original Mackey–Glass system
exhibits chaotic behavior

Thus, the MLE can be used as a metric to evaluate
the richness of the training data as well as the gen-
eralizability of the trained NDDE. Introducing time
delays into the systems may help to improve the rich-
ness of the data. Other evaluation metrics of the data
quality include the measurement noise, the sampling
frequency, the span of initial conditions, and the ratio
of the transients and steady states. We also learned
the dynamics of the same systems from noisy data
and from data without transient dynamics. NDDEs
trained on data which include initial history deliver
the best performance, since the transient data, which
cover larger part of the state space, have richer dynam-
ics. When noise is introduced into measurements, the
delay learning remains robust while the nonlinearity
learning degrades.

We also tested the NDDE approach on an Ikeda type
system [7,50] which describes the dynamics of passive
optical resonators. This is another classical time delay
system whose dynamics change qualitatively when the
time delay is varied. The details of the training process
and the evaluation of the trained NDDE are provided in
Appendix D. Again, the time delay is learned correctly
from a single chaotic trajectory and the trained NDDE
is able to reproduce the first Hopf bifurcation and the
first period doubling bifurcation. However, the bifur-

cation diagram is not accurately reproduced for larger
values of the time delay. The transition between limit
cycles and chaotic attractors in the Ikeda system is fast
compared to the Mackey–Glass system, which makes
the numerical bifurcation analysis more challenging.

6 Climate model

Besides nonlinear autonomous systems with single
delay, such asMackey–Glass system and the Ikeda sys-
tem, we can extend the training algorithms to systems
with multiple delays and external forcing. In this sec-
tion, we use a time delay neural network to learn the
dynamics of the climate model

ẋ = aA(κ, x(t − τ1)) − bA(κ, x(t − τ2)) + cu(t),

(27)

A(κ, x) =
⎧⎨
⎩
du tanh

(
κ
du
x
)

, if x ≥ 0,

dl tanh
(

κ
dl
x
)

, if x < 0,
(28)

froma single trajectorywhere the inputu(t) = cos(2π t)
represents the seasonal forcing.

This model describes the deviation of thermo-
cline depth from its long-term mean at the east-
ern boundary of the equatorial Pacific Ocean. The
chaotic behavior of this simple delay differential equa-
tion is used to demonstrate the irregular phenomenon
of the El Niño Southern Oscillation (ENSO). More
detailed explanations of this model can be found in
[51,52]. In our example, the positive and negative feed-
backs are associated with two different fixed delays
τ1 = 0.0958 and τ2 = 0.4792, while other parame-
ters are a = 2.02, b = 3.03, c = 2.6377, du = 2.0,
dl = −0.4. With these parameters, we generate a tra-
jectory using the constant history x(t) ≡ 1 as illus-
trated in Fig. 8a. The data are sampled withΔt = 0.05,
indicated by gray dots. The simulation time step is
δt = 0.01 and simulation horizon is chosen to be
H = 10.

For this learning task, we use a time delay neural
network which takes the forcing u(t) and state history
xt as input and gives state derivative ẋ(t) as output. The
network consists of two hidden layers, five neurons in
each layer, and three delays in the state. Note that the
true number of delays in the system (27) is two (and
there is no nondelayed state). That is, we moderately
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Fig. 8 Training and testing performance of the climate model.
a Training and testing datasets obtained from a single chaotic
trajectory. b Training loss along the iterations. c Learned delays
along the iterations. d Derivative prediction on test data. e Simu-
lation prediction on test data. f Maximal Lyapunov exponents of
the climate model and the learned NDDE while using M = 10

overestimate the number of delays.With three trainable
delays, the dynamics of the NDDE takes the form

ˆ̇x(t) = W3 tanh

(
W2 tanh

(
W1

⎡
⎢⎢⎣
x̂(t − τ̂1)

x̂(t − τ̂2)

x̂(t − τ̂3)

u(t)

⎤
⎥⎥⎦ + b1

)
+ b2

)
,

(29)

where W1 ∈ R
5×4, W2 ∈ R

5×5, W3 ∈ R
1×5, b1,

b2 ∈ R
5×1. Here, u(t) is obtained from interpolating

the recorded external forcing data. Thus, with a given
initial history xt0 and forcing u(t), one can simulate
the NDDE as (18) and learn the weights, biases and
delays using the loss (19) and Algorithm 1. The learn-
ing rates for all parameters are set to 0.01, the batch size
is chosen to be N = 10, and the maximum number of
iterations is set to 10000.

We present the training results of the NDDE on sin-
gle trajectory in Fig. 8. From panel (c), we can see that
two of the three delays converge to the same value τ1
and the third one converges to τ2. The final parameters
of the NDDE are determined by the minimum training
loss which is indicated by the dotted lines in panels (b)
and (c). The derivative prediction and closed-loop net-
work simulation on the test dataset are shown in panels
(d) and (e), respectively. This example shows that the
developed algorithm can be extended to systems with
external forcing where using a chaotic trajectory still
provides good performance due to its rich dynamics.
The MLE of the trained network is compared with that
of the true system in panel (f). This shows that the net-
work trained on one chaotic trajectory can reproduce
the MLE of the original system. The bifurcation dia-
grams are not presented here as they are require more
delicate analysis due to the periodic excitation and this
is beyond the scope of this work. It is an intriguing
problem for future study.

7 Conclusions and discussion

Weproposed a frameworkwhich uses time delay neural
networks with trainable delays and simulation loss to
learn the dynamics of time delay systems from data and
yields neural delay differential equations. We showed
that by including time delays, onemay reduce the struc-
tural complexity of the networks. As an example, the
Mackey–Glass system was used to test the developed
algorithm. We demonstrated that delay can be learned
from limited data and the network generalizes well if
the training data is chaotic. Thus, the maximal Lya-
punov exponent can be used to evaluate the richness
of the training data and the generalizability of trained
networks. We found that the larger the MLE is, the
richer the dynamics are and the better the trained net-
work generalizes. We also showed that the learning
algorithm worked well on learning the dynamics of
a climate model with two delays and external forcing
from a single trajectory. This again demonstrated the
effectiveness of learning from chaotic trajectory data.

The algorithm requires one to select the maximum
allowed delay for the network to prevent having the
entire trajectory as history. Establishing an algorith-
mic selection of the maximum delay can be a potential
future study. While the time step Δt depends on the
sampling data, the effects of simulation time step δt in
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DDE solver and the simulation horizon H may also be
studied in the future. Intuitively, faster dynamics will
require higher sampling frequency and smaller simu-
lation time step.

We have also tested the algorithm on multiple-state
time delay systems, such as delayed SIR model in epi-
demiology and delayed predator–prey model in biol-
ogy.While the delay learning from the state derivatives
is still robust in those systems, learning the nonlinear-
ities is more difficult due to the positivity constraint
imposed on the states. As a future direction, we will
keep exploring multiple-state time delay systems to
improve the learning algorithm and realize more com-
plex NDDEs. We also plan to use the time delay neural
networks with trainable delays to learn time delay sys-
tems from real data, e.g., in case of human posture con-
trol and vehicular traffic. Finally, we consider injecting
delays into the feedback loops of control systems in
order to obtain better training data.
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Appendices

A MATLAB code for NDDE solver

%% 4-step Adams--Bashforth scheme to solve DDEs
%% with multiple delays
function xsolu=dl_ddeab4(fun,par,delay,hist,time)
dim=length(hist(time(1)));
h=time(2)-time(1);
Maxdelay = max(ceil(max(delay)/h)*h,h);
timehist=fliplr(time(1)-Maxdelay:h:time(1));
z0=dlarray(zeros(dim,length(timehist)));
for i=1:length(timehist)

z0(:,i)=hist(timehist(i));
end
z0=z0(:);
xsolu=dlarray(zeros(dim,length(time)));
for kk=1:length(time)

timestep
tnew=time(kk);
if kk==1

znew=z0;
else

xold=zold(1:dim);
Z = reshape(zold,[dim length(timehist)]);
xdelay = interp1(fliplr(timehist),...
fliplr(Z)', time(1)-delay)';
xdelay = reshape(xdelay,[],1);
rhs1=fun(told,xold,xdelay,par);
% calculation of the solution
if kk==2

xnew = xold+h*rhs1;
elseif kk==3

xnew = xold+h*(3*rhs1-rhs2)/2;
elseif kk==4

xnew = xold+h*...
(23*rhs1-16*rhs2+5*rhs3)/12;

elseif kk>4
xnew=xold+h*...
(55*rhs1-59*rhs2+37*rhs3-9*rhs4)/24;

end
znew=[xnew;zold(1:end-dim)];

end
if kk>3

rhs4=rhs3;
end
if kk>2

rhs3=rhs2;
end
if kk>1

rhs2=rhs1;
end
told=tnew;
zold=znew;
xsolu(:,kk)=znew(1:dim);

end

B Example code for the NDDE initialization

%% an example of function
%% as the input of DDE solver above
function dx=fun(t,x,xdelay,par)
dx = par.fc3.Weights*tanh(par.fc2.Weights...

*tanh(par.fc1.Weights*...
[x;xdelay]+par.fc1.Bias)...
+par.fc2.Bias);

end

function bias = initializeZeros(sz)
bias = zeros(sz,'single');
bias = dlarray(bias);
end

function weights = initializeGlorot(sz)
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Z = 2*rand(sz,'single') - 1;
bound = sqrt(6 / (sz(2)+ sz(1)));
weights = bound * Z;
weights = dlarray(weights);
end

%% initialization of the parameters
% guess the number of delay 'nd',
% initalize randomly as dlarray
% NDDE will be the par in the fun
tau = dlarray(tau_max*rand(1,nd));
% an example of network
NDDE = struct;
NDDE.fc1 = struct;
sz = [hiddenSize nx*(1+nd)];
NDDE.fc1.Weights = initializeGlorot(sz);
NDDE.fc1.Bias = initializeZeros([sz(1) 1]);
NDDE.fc2 = struct;
sz = [hiddenSize hiddenSize];
NDDE.fc2.Weights = initializeGlorot(sz);
NDDE.fc2.Bias = initializeZeros([sz(1) 1]);
NDDE.fc3 = struct;
sz = [nx hiddenSize];
NDDE.fc3.Weights = initializeGlorot(sz);
tau = min(max(1e-5,tau),tau_max-1e-5);

C Code snippets for training

% xsolu is from dde solver 'dl_ddeab4'
% x_target is the observed data
loss = l2loss(xsolu,x_tartget)
grad_par = dlgradient(loss,par);
grad_tau = dlgradient(loss,par);
% adamupdate as an example
[par,averageGrad_p,averageSqGrad_p] = ...
adamupdate(par,grad_par,averageGrad_p,...
averageSqGrad_p,iteration);
[tau,averageGrad_t,averageSqGrad_t] = ...
adamupdate(tau,grad_tau,averageGrad_t,...
averageSqGrad_t,iteration)

D Bifurcation analysis of the Ikeda system

We train the same neural network (25) on one simula-
tion trajectory (with T = 30,Δt = 0.1) for the Ikeda
system

ẋ(t) = β sin2(x(t − τ)) − γ x(t), (30)

with parameters β = 8, γ = 2, τ = 1 and initial his-
tory x(t) ≡ 1. In the training process, the simulation
time step for the DDE solver is set to δt = 0.01, while
the horizon is H = 10, HΔt = 1. The learning rate for
delay is 0.01 and for weights and biases is 0.1. Maxi-
mum number of iterations is set to 5000.

Fig. 9 Training and testing performance of the Ikeda system.
a Derivative prediction on test data. b Simulation prediction on
test data. c Bifurcation diagram

The network successfully learns the delay τ̂ = 1
from the data and the predictions obtained by the
trained network are given in Fig. 9a and b. The bifur-
cation diagrams of the original and the learned systems
are compared in panel (c). The bifurcation diagrams
match well for smaller delay values, while there are
some differences for larger values of the delay (where
even the bifurcation analysis of the original Ikeda sys-
tem becomes numerically challenging). Note that the
network is only trained on data generated at τ = 1.
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