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Abstract The nonlinear dynamics of the path-follow-
ing control of passenger cars is analyzed in this paper.
The effect of specific modeling aspects, such as tire
deformation, steering dynamics, feedback delay and
controller saturation, is considered. Possible equilib-
rium points and singularities in the state space are
uncovered and analyzed for different vehiclemodel and
controller designs. The equilibrium of stable path fol-
lowing is then analyzed in greater detail: The domains
of stabilizing control gains are presented in stabil-
ity charts and the basin of attraction of the equilib-
rium along the stable domain is approximated with the
help of numerical continuation. Unsafe zones of con-
trol gains are highlighted, where the stable equilibrium
is surrounded by low-amplitude unstable limit cycles.
Finally, it is shown how specific modifications of the
control law can remove unwanted equilibrium points
and increase the basin of attraction of stable path fol-
lowing, resulting in safer and more reliable control of
the vehicle.
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1 Introduction

Automated driving functions have the potential to sig-
nificantly reduce the risk and severity of road traffic
accidents [31,46]. However, in order to ensure reliable
and safe operation under all potential circumstances,
it is vital to understand the possible dynamics that the
controlled vehicle might exhibit. This paper aims to
provide a comprehensive global picture of the nonlin-
ear dynamics of path-following control with feedback
delay.

The first nontrivial question during the control
design process is the choice of vehiclemodel. Themost
commonly used modeling approach for describing the
lateral and yaw dynamics of the vehicle is the use of the
so-called single-track vehicle model (sometimes also
referred to as bicyclemodel) [20,40]. Depending on the
specific use-case and the accuracy needed, there exist
many variations of this model [34,39]: The simplest
vehicle models assume rigid wheels with no tire defor-
mation [19,26], but awide range of tiremodels are also
available in the literature to describe the tire-road inter-
action [33]. The arising side forces and self-aligning
moments are commonly considered as different linear
and nonlinear functions of the side slip angles [21,45],
but more involved tire models can also be applied [5].
Additional modeling aspects include the consideration
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of geometrical nonlinearities [10,30,45], the drive type
of the vehicle [30], the inertia of the steering system
[49] and the caster length of the steered wheel [48].
When selecting the appropriate vehicle model, a bal-
ance needs to be found between model complexity and
fidelity. More complex models might provide more
accurate results at the expense of computational time,
but it also needs to be kept in mind that the additional
parameters of complex vehicle and tire models might
not be known accurately in practice.

The second important issue is related to the control
law. In general, the desired steering angle or the steer-
ing torque is generated based on the feedback signal
of the lateral distance from the reference path and the
misalignment between the path direction and the lon-
gitudinal axis of the vehicle. The earliest control algo-
rithms were proposed in the 1950s [43] and since then
a large variety of different controllers have been put
forward using sophisticated control design techniques
like model predictive control [7,8,13,23], Lyapunov-
based control [42,47], sliding mode control [9], look-
ahead/preview control [1,53], and machine learning-
based control [2,4], just to mention a few. See [35] for
a comparative analysis of the different control meth-
ods.Recent efforts also included developing controllers
which can drive at the handling limits, for example, in
the case of emergency maneuvers [14,23,52]. In such
scenarios, to take full advantage of the abilities of the
vehicle, it is essential to have a clear understanding
of the dynamics of the controlled vehicle and tune the
controllers accordingly.

It is also important to take into consideration the
time delay in the control loop during the control design
process. The total time delay consists of components
such as sensor delays, the delay caused by computa-
tion and communication within the vehicle by the var-
ious electronic control units, and the actuation delay
in the steering system. Together, these effects can add
up to several hundred milliseconds: For example, in
[6], the delay of the entire control loop was experi-
mentally determined to be in the range of 0.7−0.9 s.
In [16], the actuation delay in the steering system was
observed to be around 0.4 s. Similarly, in [53], a delay
of 0.4 s was found between the steering command and
the actual steering angle, while in [36], the measured
steering system delay was 0.5 s.

Typically, the essence of most path-following con-
trollers can be reduced to a nonlinear feedback law
which may be expressed in an explicit or implicit func-

tion of the lateral displacement and the misalignment.
For small lateral distance and small misalignment all
of these nonlinear laws simplify to a linear control law
with two tunable gains. In this paper we utilize this
simple linear controller to distill the most important
features of path following. After the detailed analysis
of the controlled vehicle with the linear control law, we
alsopropose a specificnonlinearmodification and show
how it can improve the path-following performance of
automated vehicles.

The nonlinear analysis of the controlled vehicle has
mostly been covered in the literature with the consider-
ation of a human driver [10,17,24,25,28]. Driver mod-
els are often based on some kind of feedback controller
with reaction time delay; for a comprehensive overview
see [37] and [27]. Depending on the objective of the
calculations, the nonlinear analysis of the system can
be performed using a number of different methods: A
more analytical approach is to perform the normal form
transformation and center manifold reduction of the
system to predict the nonlinear behavior of the vehicle
in the vicinity of the linear stability limits [17,24,48].
In order to cover a wider range of system parameters,
bifurcation diagrams can also be constructed using a
series of numerical simulations [25,32] or by applying
numerical continuation methods [10,28,49]. In addi-
tion, phase portraits can be used to analyze the possi-
ble equilibrium points of the system and the trajectories
between them [10,22,32,48,54].

The contributions of this paper are twofold: On the
one hand, a comprehensive nonlinear analysis of the
dynamics of the controlled vehicle is provided, includ-
ing the location of equilibrium points and singularities,
numerical continuation of periodic orbits and quantify-
ing the basin of attraction along the entire stable domain
of control gains. Three different variations of the single-
track model are considered, in order to demonstrate the
importance of considering tire dynamics and the often
neglected effects of the steering system. In addition, the
entire analysis is performed with the explicit consider-
ation of the feedback delay in the controller, instead
of the common simplification of approximating it with
a first-order lag term [10,24,28]. Based on the results
of this analysis, sensitivity to disturbances can directly
be taken into account when tuning the controller and
unsafe control gains, which might lead to high perfor-
mance in the linear sense but are vulnerable to pertur-
bations, can be avoided.
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As the second main contribution of the paper,
we explore how the dynamics can be significantly
improved by some specific modifications of the con-
trol law. This way the domain of attraction of stable
path following can be increased, leading to a safer and
more robust control performance, while also remov-
ing unwanted equilibrium points from the state space.
This may ensure that the controlled vehicle can safely
handle a variety of unexpected changes in road condi-
tions and other disturbances, from emergency obstacle
avoidance to hitting an ice patch.

The rest of the paper is organized as follows: The
vehicle models with different modeling considerations
are presented in Sect. 2. A linear and a nonlinear path-
following controller is introduced in Sect. 3 with two
different saturation functions to prevent unreasonably
strong control actions. Section4 presents the possible
equilibrium points and singularities of the controlled
vehicle. The following two sections focus on the most
important equilibrium (i.e., the straight-line motion):
The domains of stabilizing control gains of the lin-
earized system are calculated in Sect. 5, while the
dynamics of the nonlinear system are analyzed in detail
in Sect. 6. To further illustrate the results of our analy-
sis, some representative numerical simulations are pre-
sented in Sect. 7. The results are then concluded in
Sect. 8.

2 Vehicle models

Three variations of the in-plane single-track model
of passenger cars are presented in this section, with
increasing complexity. The main modeling assump-
tions of the single-track model apply to all three varia-
tions, i.e., the front and the rear wheels are bothmerged
into a single wheel, respectively, while no pitch and roll
motions are considered.

2.1 Kinematic model with assigned steering angle

The simplest version of the single-track model of pas-
senger cars (see Fig. 1a) assumes rigid wheels, which
means that the side slip of the tires are neglected.
This assumption is valid for lower lateral accelera-
tions. Furthermore, the rotational degree of freedom
of the wheels are not considered, either, leading to the
so-called skate model of the wheels [39,41]. The con-

figurational coordinates of the vehicle include the rear
axle center position coordinates xR and yR in the global
coordinate system and the yaw angle ψ . Selecting the
coordinates of point R as configurational coordinates
greatly simplifies the resulting equations. The steering
angle δs is directly assigned by the controller without
considering the dynamics of the steering system. The
vehicle parameters include the wheelbase f and the
longitudinal velocity V , which is assumed to be con-
stant. Since the parameter V determines the velocity
component of point R pointing into the rolling direction
of the rear wheels, this modeling choice corresponds to
a rear wheel drive vehicle.

The constant longitudinal velocity and the no side
slip conditions at the front (point F) and rear (point R)
wheels can be described by the following three kine-
matic constraints:

ẋR sin(ψ + δs) − ẏR cos(ψ + δs) − f ψ̇ cos δs = 0,
(1)

− ẋR sinψ + ẏR cosψ = 0, (2)

ẋR cosψ + ẏR sinψ = V . (3)

These constraint equations can be directly solved for
the state derivatives, leading to the equations of motion

ẋR = V cosψ, (4)

ẏR = V sinψ, (5)

ψ̇ = V

f
tan δs . (6)

2.2 Dynamic model with assigned steering angle

As a next modeling step, the vehicle model is extended
with the inclusion of elastic tires (see Fig. 1b). The
deformation of the tires generates active forces, there-
fore the vehicle mass m and yaw moment of inertia Jz
also need to be considered. The distance of the center
of gravity C from the rear axle is denoted by d.

The configurational coordinates xR, yR andψ are the
same as in the case of the kinematic model of Sect. 2.1.
However, since the direction of the velocity vectors at
the front and rear axles are now determined by the side
slip angles αF and αR, only the kinematic constraint
(Eq. 3) of constant longitudinal velocity remains.

By using the lateral velocity σ1 of point R and the
yaw rate σ2 as so-called pseudovelocities, the equa-
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Fig. 1 Vehicle models: (a) kinematic model with assigned steering angle, (b) dynamic model with assigned steering angle, (c) dynamic
model with torque steering

tions of motions of the vehicle can be derived using
the Appell–Gibbs method [15], as detailed in [51]. The
governing equations consist of the formulas of the gen-
eralized velocities

ẋR = V cosψ − σ1 sinψ, (7)

ẏR = V sinψ + σ1 cosψ, (8)

ψ̇ = σ2, (9)

and the Appell–Gibbs equations

[
m md
md JC + md2

] [
σ̇1
σ̇2

]
=

[
f1
f2

]
, (10)

where the right-hand side is

f1 = −FR − FF cos δs − mVσ2, (11)

f2 = −MF − MR − FF f cos δs − mdVσ2. (12)

The lateral tire forces FF and FR, as well as the
self-aligningmomentsMF andMR are calculated using
the nonlinear brush tire model (see Appendix A.1 for
details) as functions of the side slip angles

αR = arctan
(σ1

V

)
, αF = arctan

(
vF,⊥
vF,‖

)
, (13)

where the perpendicular and parallel velocity compo-
nents (with respect to the rolling direction) at the front
wheel are

vF,⊥ = (σ1 + f σ2) cos δs − V sin δs , (14)

vF,‖ = (σ1 + f σ2) sin δs + V cos δs . (15)

The kinematic trail from the suspension system is not
considered when calculating the self-aligningmoment.

We note that the analysis in the subsequent sections
includes equilibrium points where the rolling direc-
tion of the steered wheel changes, i.e., it starts rolling

backward. Although these points carry little practical
relevance, they help us gain a deeper understanding
of the global dynamics of the controlled vehicle. In
order to accurately determine the direction of the tire
side force in such cases too, a modified side slip angle
α̃F = αF sign(vF,‖) was used during the calculation
of FF (for the self-aligning moment MF, the original
definition of αF can be used).

2.3 Dynamic model with torque steering

In the previous models, the steering angle δs was used
as the system input. Since the input signal is gener-
ated by the controller, this means that the desired steer-
ing angle instantaneously appears at the wheels, and
a sudden change in the reference signal will cause the
steered wheels to jump instantaneously from one angle
to another.

In order to overcome this limitation, the single-
track vehicle model from Sect. 2.2 is extended with the
dynamics of the actuation (see Fig. 1c). This means
that the path-following controller only determines the
desired steering angle δdess , and an additional lower-
level controller is used to generate a steering torque
Ms that aims to minimize the error between the desired
and the actual steering angle. This steering torque acts
against the moment of inertia JF of the steering system
and the self-aligning moment at the front wheels MF.

In order to extend the vehicle model with the above
considerations, the steering angle δs is used as an addi-
tional generalized coordinate, alongside xR, yR and ψ .
Since the kinematic constraint of constant longitudinal
speed in Eq. (3) still applies, the difference between
the number of generalized coordinates (four) and kine-
matic constraints (one) increases to three, therefore a
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third pseudovelocity σ3 needs to be defined. A suitable
choice is to define it as the steering rate, i.e., σ3 := δ̇s.

The resulting equations ofmotion consist of the time
derivatives of the generalized coordinates

ẋR = V cosψ − σ1 sinψ, (16)

ẏR = V sinψ + σ1 cosψ, (17)

ψ̇ = σ2, (18)

δ̇s = σ3, (19)

as well as the three Appell–Gibbs equations

⎡
⎣ m md 0
md JC + md2 + JF JF
0 JF JF

⎤
⎦

⎡
⎣σ̇1

σ̇2
σ̇3

⎤
⎦ =

⎡
⎣ f1
f2
f3

⎤
⎦ , (20)

with

f1 = −FR − FF cos δs − mVσ2, (21)

f2 = −MF − MR − FF f cos δs − mdVσ2, (22)

f3 = −MF + Ms. (23)

The steering torque Ms is generated by the lower-level
proportional-derivative controller as follows:

Ms = −kp
(
δs − δdess

)
− kdσ3, (24)

where kp and kd denote the lower-level control gains.

3 Path-following controller

In this section, the path-following problem of the vehi-
cle is established. Our goal is to drive the rear axle
center point R along the path by feeding back the lat-
eral deviation and the yaw angle error. We select point
R for tracking the reference path, since this will lead
to the simplest form of the control law. Furthermore,
it was shown in [39] that achieving zero displacement
and angle error at the same time during path following
is only possible for tracking the rear axle center point
(assuming the simplest, kinematic vehicle model). Fur-
ther analysis regarding the effect of sensor location (i.e.,
which point is used for feedback) can be found in [38].

In order to simplify our analysis, a straight reference
path along the x-axis is considered. This way the vehi-
cle state yR directly corresponds to the lateral position
error and the yaw angle error is equal to ψ . Two con-
troller variations are considered, first, a simple linear
feedback controller, then a modified nonlinear version.

In addition, the saturation of the control input will also
be considered.

In the case of the kinematic vehicle model and the
dynamic model with assigned steering angle, the out-
put of the controllers detailed in this section directly
generate the steering angle, i.e., δs = δdess . In the vehi-
cle model with torque steering, however, δdess is only
used as the reference of the lower-level controller in
Eq. (24).

3.1 Linear control law

The simplest linear control law generates the desired
steering angle as

δdess (t) = −Py yR(t − τ) − Pψψ(t − τ), (25)

where Py and Pψ are the control gains and τ denotes
the feedback delay. The delay term includes sensor and
communication delays, processing time aswell as actu-
ator delays.

3.2 Nonlinear control law

As a variation of the linear control law in Eq. (25), the
nonlinear control law

δdess (t) = −Pψ

(
ψ(t − τ) + arctan

(
Py
Pψ

yR(t − τ)

))

(26)

is considered, which was originally proposed in [39].
When linearized around small errors, Eq. (26) leads
to the linear controller in Eq. (25), therefore close to
the reference path, the two controllers behave similarly.
However, the arctangent function in Eq. (26) limits the
effect of large lateral errors: notice that the second term
in the control law acts as the reference yaw angle

ψdes = − arctan

(
Py
Pψ

yR(t − τ)

)
, (27)

therefore if the vehicle is far from the reference path
(yR → ±∞), the controller will steer directly toward
it (ψdes → ∓π/2).
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Fig. 2 Saturation functions

3.3 Controller saturation

In order to prevent unreasonably large steering angles,
the control signal can be limited by a saturation func-
tion. The simplest approach is to use

sat(δdess ) =

⎧⎪⎨
⎪⎩

−δsat if δdess < −δsat,

δdess if − δsat ≤ δdess ≤ δsat,

δsat if δdess > δsat,

(28)

which simply ensures that the control signal does not
go below the lower saturation limit −δsat or above the
upper limit δsat. Between these two threshold levels,
the original value is unchanged (see Fig. 2a).

An alternative option is to use a continuous wrapper
function such as

g(δdess ) = 2δsat
π

arctan

(
π

2δsat
δdess

)
(29)

(originally introduced in [39]). This function is
bounded by ±δsat, but it also affects the input signal
between the limits, as shown in Fig. 2b. This allows
the use of larger control gains, which improves track-
ing performance for small errors, while the shape of

the saturation function mitigates the control action for
larger errors, which may help to avoid unwanted oscil-
lations and overshoots.

Calculating the saturation thresholds, i.e., the maxi-
mum allowable steering angle can be based on the cur-
rent vehicle speed, in order to limit the lateral accelera-
tion of the vehicle during the maneuver and thus ensure
passenger comfort. The lateral acceleration at the rear
axle is

alatR = −ẍR sinψ + ÿR cosψ, (30)

which, using the equations of motion of the kinematic
vehicle model in Eqs. (4–6), can be written as

alatR = V 2

f
tan δs . (31)

From this, the steering angle limit corresponding to a
given maximum allowable lateral acceleration is

δsat = arctan

(
f alatR,max

V 2

)
. (32)

Throughout this paper, we consider a maximum lateral
acceleration of 8m/s2, which, using the parameters in
Table 1, corresponds to a saturation level of δsat =
0.0539 rad (≈ 3.09 deg) at V = 20 m/s.

4 Equilibria and singularities

In order to gain a deeper understanding of the global
dynamics of the controlled vehicle, first, the possible

Table 1 List of vehicle
parameters

Parameter Value

Vehicle wheelbase ( f ) 2.7 m

Distance between rear axle and center of gravity (d) 1.35 m

Vehicle mass (m) 1430 kg

Yaw moment of inertia (JC) 2500 kgm2

Steering system moment of inertia (JF) 0.25 kgm2

Lower-level steering control proportional gain (kp) 640 Nm

Lower-level derivative gain (kd) 8 Nms

Longitudinal velocity (V ) 20 m/s

Time delay (τ ) 0.5 s
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equilibrium points of the system have to be uncovered.
The simplicity of the kinematic vehicle model allows
us to reach some analytical results, which can then be
used to better understand and verify the results of the
more complicated vehicle models.

4.1 Kinematic model with linear controller

The closed loop system of the kinematic vehicle model
and the linear controller in Eq. (25) is the following:

ẏR = V sinψ, (33)

ψ̇ = V

f
tan

(−Py yR(t − τ) − Pψψ(t − τ)
)
. (34)

Note that the equation of ẋR (Eq. 4) can be decoupled
from the rest, because the position of the vehicle along
the x-axis does not influence its lateral dynamics.

In an equilibrium point defined by yR(t) ≡ yR,0 and
ψ(t) ≡ ψ0, the following system of algebraic equa-
tions is satisfied:

0 = V sinψ0, (35)

0 = V

f
tan

(−Py yR,0 − Pψψ0
)

︸ ︷︷ ︸
=δs,0

. (36)

FromEq. (35), it can be seen that the possible equilibria
in terms of ψ are located at

ψ0 = kπ, k ∈ Z, (37)

which means that the stationary motion of the vehicle
will always be parallel to the x-axis, either in the pos-
itive or in the negative direction. Since there is no tire
deformation included in the kinematic model, this can
only be achieved if the steered wheels point parallel to
the vehicle body, i.e., δs,0 = nπ , n ∈ Z (see Eq. 36).
Using the control law in Eq. (25), this corresponds to

−Py yR,0 − Pψψ0 = nπ, (38)

which leads to

yR,0 = 1

Py
(Pψk + n). (39)

Therefore, there exist infinitely many stationary solu-
tions parallel to the x-axis at different values of y,where
the corresponding vehicle orientation ψ0 and steering
angle δs,0 are determined by the integers k and n. Note

Fig. 3 Equilibrium points and singularities in the kinematic
vehicle model for Py = 0.3m−1 and Pψ = 1. (a) Phase por-
trait in the (yR, ψ) plane. (b) The location of the equilibria as the
control gain Py is increased. (c) Illustration of the steady state
trajectories. Vehicle parameters are listed in Table 1

that at this point, there is no limit imposed on the steer-
ing angles and the front wheels can be turned around
arbitrarily many times.

An example of the location of these equilibria (green
circles and red crosses) in the (yR, ψ) phase portrait
can be seen in Fig. 3awith the corresponding stationary
steering angles that are also highlighted by the gray iso-
lines. As Py is increased, the equilibrium points move
closer to each other in terms of yR according toEq. (39),
as shown in Fig. 3b. The sketches in panel (c) illus-
trate the steady state vehicle trajectories corresponding
to the different equilibrium points marked by roman
numbers in panel (a).

Singularitiesmay also occur in the kinematicmodel,
when the tangent function in Eq. (6) becomes singular.
This occurs if δs,0 = π

2 + lπ , l ∈ Z, which corresponds
to configurations when the direction of the steered
wheel is perpendicular to the vehicle body. In such
scenarios, the kinematic constraint at the front wheel
(Eq. 1) would result in a zero velocity component in
the longitudinal direction of the vehicle. This obviously
contradicts the kinematic constraint in Eq. (3), which
prescribes a constant (nonzero) longitudinal speed V .
Therefore, the kinematic model becomes singular at
these values of δs. If the steering angle is generated
according to the linear controller in Eq. (25), these sin-
gularities can be described by
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Fig. 4 Equilibrium points and singularities of the dynamic vehi-
cle models using the different controller variations. Gray contour
lines show the steering angle values along the phase portraits. In
the shaded areas, the steering angle exceeds the saturation limit.

The control gains are Py = 0.015m−1 and Pψ = 0.6, the rest
of the vehicle parameters are listed in Table 1. The stability of
the equilibrium points correspond to the dynamic vehicle model
with torque steering

ψ = − 1

Pψ

(π

2
+ lπ + Py yR

)
, (40)

as shown by the black dashed lines in the (yR, ψ)-plane
in Fig. 3a).

4.2 Dynamic vehicle models

In case of the more complicated vehicle models and
controllers, the equilibrium points can only be iden-
tified numerically. However, some considerations can
be used to reduce the dimension of the correspond-
ing system of nonlinear algebraic equations that needs
to be solved. On the one hand, the equation of xR
can be decoupled in case of the other vehicle mod-
els too. In addition, Eqs. (8) and (17) can be used to
directly express thevalueofσ1 in an equilibrium (where
ẏR ≡ 0) as

σ1,0 = −V tanψ0. (41)

Moreover, σ2 and (in case of the third vehiclemodel) σ3
can only be zeros in an equilibrium, since these state
variables are by definition directly equal to the state
derivatives ψ̇ and δ̇s. As a result, finding the equilib-
ria of the dynamic vehicle model with assigned steer-
ing angle reduces to a two dimensional problem (with
unknowns yR,0 and ψ0), while for the dynamic vehi-
cle model with torque steering, three unknowns remain
(yR,0,ψ0 and δs,0). The possible solutions of the result-
ing system of nonlinear algebraic equations were cal-

culated numerically using themulti-dimensional bisec-
tion method [3]. This way both equilibrium points and
singularities of the system can be identified.

The two vehicle models with tire dynamics lead to
the same phase portraits, as seen in Fig. 4. When using
the linear controller (Fig. 4a), a similar periodicity of
equilibrium points (green circles and red crosses) can
be observed as in the case of the kinematic model in
Fig. 3a. The stationary values of ψ and δs are once
again integer multiples of π , while the distance of the
equilibria in terms of yR depends on the control gains.

When the vehicle model includes the lateral tire
dynamics, singularities may occur if the longitudinal
(with respect to the wheel) velocity component of the
steered wheel becomes zero. This occurs if the direc-
tion of the wheel is perpendicular to the vehicle body
(δs = pπ/2, p ∈ Z), where the wheel is on the verge of
changing its rolling direction. This leads to the signum
function in α̃F (see the end of Sect. 2.2) becoming sin-
gular, thus the side slip angle is not defined properly in
these points. This is similar to the common problem of
tire models becoming singular at low speeds because
of the vehicle speed in the denominator of the side slip
angle [21]. These singular points are depicted in Fig. 4a
by black circles.

When a saturation function is used to limit the
applied steering angles (Fig. 4b), the equilibriumpoints
with steering angle values outside of the saturation lim-
its (corresponding to the gray areas in the figure) dis-
appear. The nonlinear controller in Eq. (26) has a sim-
ilar effect (see Fig. 4c), where the atan function limits
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the effect of yR (i.e., the distance from the reference
path) on the input signal. Therefore the steering angle
is much more limited along the phase portrait, which
has the effect of removing a large number of equilib-
rium points (see how the linear isolines of δs along the
phase portrait in Fig. 4a are replaced by the nonlinear
curves in Fig. 4c). However, large values of ψ can still
lead to unreasonably large steering angles, therefore it
is still possible that the vehicle will follow a different
path parallel to the x-axis.

Notice how the saturation function in Fig. 4b and the
nonlinear controller in Fig. 4c remove unwanted equi-
libria from different regions of the phase portrait. If the
two is combined (i.e., the nonlinear control law is used
with a saturation function, Fig. 4d), all the unwanted
stationary motions can be avoided: the nonlinearity
in the control law mitigates the effect of large lateral
errors, while the saturation function prevents reaching
any additional equilibrium points with large steering
angles. The only remaining equilibrium of the system
is the origin, which corresponds to stationary straight-
line motion along the x-axis as intended.

We note that the choice of saturation function has
no effect on the stationary motions of the vehicle, i.e.,
Eqs. (28) and (29) lead to the same results in this sec-
tion. In addition, the stability of the individual equilib-
riumpoints depends on the choice of parameters (which
can of course affect the location of the equilibria too)
as well as the vehicle model. In Fig. 4, the stability of
the equilibria were evaluated using the vehicle model
with torque steering, for the parameter values listed in
Table 1. In the next section, the stability properties of
the origin will be explored in greater detail.

5 Linear stability analysis of the straight-line
motion

Here, the equilibrium of straight-line motion along the
x-axis is analyzed in detail. The state variables are all
zeros in this stationary motion apart from xR = V t ,
but as previously, the corresponding equation can be
decoupled from the rest. The reduced state vectors con-
sisting of the remaining state variables are

xkin = [
yR ψ

]T
(42)

in case of the kinematic vehicle model,

xdyn = [
yR ψ σ1 σ2

]T
(43)

for the dynamic vehicle model with assigned steering
angle, and

xservo = [
yR ψ δs σ1 σ2 σ3

]T
(44)

for the dynamic model with torque steering. Lineariz-
ing the corresponding equations of motion around the
origin leads to the linear state space model

ẋi = Aixi + Bi ui , i ∈ {kin, dyn, servo}, (45)

where the state matrices Ai and input matrices Bi are
listed in Appendix A.2. In the vehicle models with
directly assigned steering angle, the system input is
ukin = udyn = δs, while in case of torque steering, the
desired steering angle is considered as the input of
the system (uservo = δdess ). The steering torque Ms is
regarded as part of the system dynamics in the matri-
ces Aservo and Bservo.

Linearizing the control law in Eq. (26) leads to the
linear controller in Eq. (25), therefore the choice of
controller does not affect the local stability of the sys-
tem. Introducing the appropriately sized gain vectorKi ,
where the only nonzero elements are −Py and −Pψ in
the first and second place, respectively, the linearized
system input can be written as ui = Kixi (t − τ).

Thus, the characteristic equation of the system
becomes

Di (λ) := det
(
λIi − Ai − BiKie

−λτ
) = 0, (46)

where λ ∈ C is the characteristic exponent and Ii is the
identity matrix of appropriate size. Because of the time
delay in the control loop, the characteristic equation is
transcendental with infinitely many roots in the com-
plex plane. The asymptotic stability of the linearized
system is ensured if all of these characteristic roots
have negative real parts. At the boundaries of stabil-
ity, there exist characteristic exponents whose real part
is zero. If a characteristic exponent moves to the right
half plane at λ = 0, static stability loss occurs, where
the state variables divergewithout oscillation. Thismay
correspond to a saddle-node bifurcation of the nonlin-
ear system. Conversely, if a complex conjugate pair
of characteristic exponents crosses the imaginary axis
(i.e., λ = ±iω), dynamic stability loss occurs, where
the vehicle loses its stability with oscillations at the
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Fig. 5 Stability maps of the three vehicle models in the delay-
free case (top three panels) andwith a feedback delay of τ = 0.5 s
(bottom three panels). The rest of the vehicle parameters are listed
in Table 1

vibration frequency ω. The nonlinear system in this
case may undergo a Hopf-bifurcation.

The effects of the control gains Py and Pψ on the
stability of the system can be showcased using stability
charts, as in Fig. 5. Substituting λ = 0 into the char-
acteristic equation in Eq. (46) leads to the boundary
of static stability loss at Py = 0 for all three vehicle
models. Conversely, the boundaries of dynamic sta-
bility loss can be determined using the D-subdivision
method [18,29], by evaluating Di (iω) = 0. The result-
ing complex equation can be separated into its real and
imaginary part, then the two equations can be solved for
two arbitrary system parameters, leading to the curves
of the stability boundaries parameterized by ω.

The top three panels of Fig. 5 show the stability
charts of the controlled vehicle in the delay-free case.
When the steering systemdynamics are neglected (pan-
els a and b), the stable domain is unbounded, while in
the torque steering model (panel c) the delay-free sta-
ble domain has a similar D shape to the delayed cases
in the bottom three panels. This shows that the iner-
tia of the steering system acts as a filtering mechanism
on the higher-level controller, which affects the overall
dynamics similarly to a feedback delay. The time delay,
however, significantly reduces the stable domain, as
indicated by the different scaling of the stability charts
in panels (d–f). Here, the consideration of the steering
dynamics seems to have a beneficial effect in terms of
stability, but the nonlinear analysis in the following sec-
tion will show that the majority of the additional stable
area can be unsafe to use in practice.

6 Nonlinear analysis of the straight-line motion

The stability charts in the previous section only pro-
vide information about the local dynamics of the sys-
tem near the equilibrium point corresponding to the
straight-line motion. The boundaries of dynamic sta-
bility loss, however, correspond to Hopf bifurcations in
the nonlinear system. This means that there exist limit
cycles in the state space and the quality of the solu-
tion can largely depend on the initial conditions. The
vehicle might also react differently to different sizes
of perturbations, and it is possible that stable straight-
line motion is not achieved even if the control gains are
selected from the linearly stable parameter domain.

In order to gain a clear picture of these nonlinear phe-
nomena,weperformednumerical continuationwith the
help of the DDE-Biftool [11,12,44] software package.
The results in this section are based on the most real-
istic vehicle model, where the tire dynamics and the
steering torque are both considered. By following the
limit cycles emerging from the bifurcation points at the
stability boundary, it can be uncovered which regions
of the stable parameter domain are more susceptible to
perturbations. For control gain combinations where the
limit cycle amplitude is lower, the system can leave the
basin of attraction of the stable equilibrium even for
smaller perturbations.

Since the state space of the system is infinite dimen-
sional due to the time delay in the control loop, we
can only show sections of the basin of attraction along
the control parameters: In the bifurcation diagrams in
Fig. 6, the oscillation amplitude in terms of yR is used
to represent the periodic solutions.

The four columns in Fig. 6 correspond to the four
controller variations: the first column shows the nonlin-
ear behavior of the linear controller in Eq. (25) without
any saturation function. The panels of the second col-
umn correspond to the nonlinear control law in Eq. (26)
still without saturation. In the third column, the non-
linear control law is wrapped into the saturation func-
tion sat(δdess ) in Eq. (28) and in the last column, the
saturation function g(δdess ) in Eq. (29) is used with the
nonlinear control law. The bifurcation diagrams in pan-
els (a)-(p) show the limit cycle amplitudes of the four
controller variations in terms of yR as a function of the
control gain Py , for different fixed values of Pψ . The
corresponding sections of Pψ are indicated by dashed
lines in the stability charts in panels (q)-(t).
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Fig. 6 Nonlinear analysis of the four controller variations. Pan-
els (a–p): bifurcation diagrams along different sections of the
stability charts. Panels (q–t): stability charts with the colormap

indicating the amplitude of unstable limit cycles inside the stable
domain. Red plus sign denotes the optimal control gains of the
linear closed-loop system

In addition, the color maps in the stability charts
show how the unstable limit cycle amplitudes change
along the stable domain of control gains. We con-
sider the regions of stabilizing control gains where the
limit cycle amplitude is below 3.5m (representing the
width of one lane) as unsafe from a practical point of
view. The so-called safe zone, where the amplitudes are
above this limit and therefore the vehicle is more robust
against perturbations, is shaded gray in Fig. 6q–t.

Whenusing the linear controller inEq. (25) (first col-
umn in Fig. 6), a large part of the linearly stable domain
of control gains is enclosed by a low-amplitude unsta-
ble limit cycle, and the safety condition is only met for
smaller control gains. Based on the linearized system,
a pair of optimal control parameters can be identified,
which results in the fastest decay of the solution near the
equilibrium. This optimal gain combination is denoted
by a red plus sign in panel (q). Even though the best
performance of the linearized system can be achieved
in this point, the nonlinear analysis indicates that the

vehicle will be susceptible to perturbations if the con-
troller is tuned this way. This shows that relying only
on the results of linear analysis can be misleading and
it can result in serious safety issues in practice.

The nonlinear control law in Eq. (26) was already
shown (in Sect. 4.2) to be able to remove a number of
unwanted equilibrium points, but based on the bifur-
cation diagrams (in the second column in Fig. 6), it
has practically no effect on the nonlinear dynamics
near the equilibrium of straight-line motion. Namely,
the branches of unstable limit cycles in the bifurca-
tion diagrams (a), (e), (i) and (m) are very similar to
the branches of panels (b), (f), (j) and (n), respectively.
Accordingly, the coloring of the unsafe zones in panels
(q) and (r) concur.

The saturation of the input signal, however, can sig-
nificantly increase the size of the safe zone. If the basic
threshold function in Eq. (28) is used (third column in
Fig. 6), where the input signal is cut off above a pre-
determined threshold, the branches of the limit cycles
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sharply change direction once the saturation level is
reached, see panels (g) and (k). This leads to a signifi-
cant increase in the size of the safe zone, while the rest
of the limit cycles, where the saturation is not active,
remain unchanged.

Although the local bifurcations of the system are not
influenced by the saturation, fold bifurcations of peri-
odic orbits occur and stable periodic orbits with ampli-
tudes below 3.5m appear for control gains inside the
stable domain (see panel c). This means that the vehi-
clewill start oscillating around the lane centerlinewhen
sufficiently perturbed. It is also possible that multiple
fold points occur along the same branch, leading to two
different unstable periodic orbits (with different ampli-
tudes) for the same control gains (see panel g). The
coloring of the stable domain, however, always corre-
sponds to the lowest amplitude unstable limit cycle,
indicating the basin of attraction of the equilibrium.
We note that in order to avoid numerical problems dur-
ing the continuation process, the saturation function
sat(δdess ) was smoothed according to Appendix A.3.

The continuous saturation function g(δdess ) modi-
fies the input signal even for small steering angles,
therefore it affects the limit cycles at lower amplitudes,
leading to a further increase in the safe zone of con-
trol parameters (see the panels in the fourth column
of Fig. 6). Although locally, the Hopf-bifurcations still
remain subcritical, the emerging unstable limit cycles
surround only a small part of the stable domain and
nearly all stabilizing control gains become sufficiently
robust against perturbations.

Figure 7 shows the bifurcationdiagrams at Pψ = 0.6
not only in terms of yR (as in panels (e)-(h) in Fig. 6),
but also in terms of the desired steering angle δdess and
the realized steering angle δs. It can be seen that even
if there is no saturation function wrapped around the
control law, the actual steering angle remains smaller
than δdess due to the steering system dynamics. When
the simpler saturation function sat(δdess ) is applied, the
fold of periodic orbits occurs when the desired steering
angle reaches the saturation level. Until that point, the
saturation function has no effect, and the limit cycle
branch follows exactly the non-saturated cases. On the
other hand, since the continuous saturation function
g(δdess ) becomes active for small steering angles too,
the corresponding branches do not follow the others.
It can also be seen in panel (b) that while the sat(δdess )

function sharply cuts off the desired steering angle once
the saturation threshold is reached, in case of the g(δdess )

Fig. 7 Bifurcation diagrams of the four controller variations for
Pψ = 0.6. The vertical axes show the amplitude of the lateral
position yR (a), the desired steering angle (b), and the actual
steering angle (c) along the periodic orbits

function, the desired steering angle smoothly converges
toward the limit value δsat.

As previously, the limit cycles in panel (a) are con-
sidered up to a maximum oscillation amplitude of
yR = 3.5 m. In panels (b) and (c), the branches are
plotted in color until this limit is reached, while the
rest of the branches are colored in gray. Since the cor-
responding limit cycles are rapidly increasing in ampli-
tude beyond this point, numerical issues start to occur
and the results become less reliable.

7 Numerical simulations

In order to illustrate the effect of the above nonlin-
ear phenomena, a series of numerical simulations were
performed. Three pairs of control gains were selected
(see points A to C in Fig. 6) to demonstrate the sen-
sitivity of the system to initial conditions in different
parts of the stable domain. Point A (Py = 0.005m−1,
Pψ = 0.2) is inside the safe zone using all four con-
troller variations, i.e., there is no unstable limit cycle
with amplitude lower than 3.5m around the stable equi-
librium if these control gains are used. In point B
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Fig. 8 Simulation results using the control gains of points A, B and C in Fig. 6 with two different initial conditions. Vehicle parameters
are listed in Table 1

(Py = 0.015m−1, Pψ = 0.6), the limit cycle ampli-
tudes are lower when no saturation function is used,
while point C (Py = 0.025m−1, Pψ = 0.8) is only part
of the safe zone when using the continuous saturation
function g(δdess ). In addition, the red plus signs in the
stability charts in Fig. 6 indicate the optimal control
gains in terms of the fastest decay of the linearized
system (Py = 0.0093m−1, Pψ = 0.548).

The simulations were performed using two differ-
ent initial conditions in terms of yR (the rest of the
state variables were set to zero): On the one hand,
yR(t ≤ 0) = 3.5 m was used to represent a regular
lane-change maneuver, while a larger initial condition
was considered as yR(t ≤ 0) = 7m, as if the automated
vehicle wants to change two lanes at once.

The simulation results in Fig. 8 show that when the
control gains are selected from the safe zone (panels
a and d), the vehicle can safely perform both maneu-
vers regardless of which controller is used. However,
since the control gains used in point A are relatively
small, the evolution of the lateral position is not ideal:
some unwanted oscillations can be observed, with large
settling time and significant overshoot.

The performance of the controller can be improved
by selecting larger control gains (see panels b and e
using the control gains in point B). Since point B is the
closest to the optimal control gains of the linearized
system, a smoother, more dynamic lane change can be

observed in panel (b). However, because of the unstable
limit cycle, the larger initial condition leads to instabil-
ity in panel (e) if no controller saturation is used. This
shows that relying only on the linear analysis of the
system can lead to safety issues in practice.

Finally, the control gains in point C are selected from
the part of the stable domain where the limit cycle
amplitude is dangerously low in all controller varia-
tions, except when the saturation function g(δdess ) is
used. Therefore, only this controller variation results
in a stable lane-change maneuver (regardless of initial
conditions). When the simpler saturation function is
used, the system leaves the basin of attraction of the
stable equilibrium and converges to a stable periodic
solution instead (this stable limit cycle can be observed
in Fig. 6c). If no saturation function is used, the vehi-
cle loses its stability in both simulation scenarios, even
though the control gains are selected from the linearly
stable domain.

Two additional simulation setups can be seen in
Fig. 9, where the control gains are selected from the lin-
early unstable domain. In panel (a), the stable domain
is left by selecting a too large value for Pψ . In this
case, the saturation functions in the controller mitigate
the negative effects of stability loss, as the vehicle will
move according to a small amplitude stable limit cycle
instead of swerving off the road. Stable limit cycle solu-
tions can be similarly observed in panel (b), where the
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Fig. 9 Numerical simulations in the unstable domain

stable domain is left in the direction of Py . However,
the amplitude of the oscillations is significantly larger
in this case, therefore the saturation functions provide
no additional safety benefit here.

8 Conclusion

A comprehensive dynamical analysis of the path-
following control of automated vehicles was presented
in this paper. By comparing three variations of the
single-track vehicle model, we showed the impor-
tance of including the tire-ground interaction and the
often neglected steering system dynamics in the vehi-
clemodel. The consideration of thesemodeling aspects
can largely influence the domain of stabilizing control
gains of the path-following controller. As an additional
modeling step, the kinematic trail of the suspension
system could potentially also affect the dynamics of
the steered wheel.

The possible steady states and singularities of the
controlled vehicle have also been explored.We showed
that there exist steady statemotions parallel to the refer-
ence path for all vehicle models. However, by limiting
the applicable steering angles using some simple non-
linearities in the control law, these undesirable equilib-
rium points can be removed from the state space.

A comprehensive bifurcation analysis of the entire
stable domain of control gains has also been performed.

The amplitudes of the uncovered unstable limit cycles
around the stable equilibrium are good indicators of the
robustness of the system against perturbations. Based
on the limit cycle amplitudes, a safe zone could be
identified inside the stable domain, where no unsta-
ble limit cycle exists with oscillation amplitude below
a certain limit. This safe zone of control parameters
can be extended using the nonlinearities in the control
law. This allows the use of larger control gains, which
leads to faster control action without compromising the
safety of the controller. This is especially important in
case of emergency obstacle avoidance, where the con-
troller must be able to handle larger perturbations in a
fast and accurate way, without significant overshoot.

We showed that the nonlinear behavior of the vehicle
can further be improved by using a continuous wrap-
per function to limit the control action. In addition, a
series of numerical simulations have been performed
to illustrate the sensitivity of the system to perturba-
tions depending on the controller selection. Although
the calculations have been performed based on an over-
steering vehicle configuration, themain results apply to
understeering vehicles too. Such a scenario is analyzed
indetail in [50]. It is alsoworth noting that smaller delay
values do not affect the main results, either: Although
the linearly stable domain of control gains increases
for smaller values of τ , the nonlinear behavior of the
system qualitatively remains the same.

Overall, the results presented in this paper provide
a detailed overview of what kinds of local and global
dynamics can be expected from the controlled vehi-
cle, and how these dynamics can be improved by some
modifications of the control law. Additionally, the sta-
bility charts with the results of the bifurcation analysis
provide further insight for the designer compared to
the toolset of traditional linear analysis, which can be
used as guidelines for tuning the controller in order to
achieve reliable and robust lateral control of the vehi-
cle. In future research, the analysis could be extended
for the case of non-zero path curvature, and investigat-
ing the use of a preview or lookahead control law to
compensate the effects of feedback delay.
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Appendix

A.1 Brush tire model

The tire side force and self-aligning moment charac-
teristics in this paper are modeled using the nonlinear
brush tire model. This model assumes a parabolic pres-
sure distribution along the tire-ground contact patch

due to the vertical wheel load, leading to the lateral
force characteristics

F(α) =

⎧⎪⎨
⎪⎩

φ1 tan α + φ2sgn α tan2 α+
+φ3 tan3 α, 0 ≤ |α| < αcrit,

μFzsgn α, αcrit < |α|,
(47)

where the coefficients are

φ1 = C,

φ2 = − C2

3μ0Fz

(
2 − μ

μ0

)
,

φ3 = C3

9μ2
0F

2
z

(
1 − 2μ

3μ0

)
.

(48)

The parameters of the brush model include the ver-
tical wheel load Fz , the sliding and rolling coefficients
of friction μ and μ0 between the tire and the ground,
as well as the so-called cornering stiffness C = 2a2k,
where a is the half-length of the contact patch and k
is the distributed lateral stiffness of the tire. The crit-
ical side slip angle αcrit denotes the state where the
entire contact patch begins sliding. This is calculated
as αcrit = 3μ0Fz

2a2k
.

The self-aligningmoment characteristic of the brush
tire model is

M(α) =

⎧⎪⎨
⎪⎩

μ1 tan α + μ2sgn α tan2 α+
+μ3 tan3 α + μ4sgn α tan4 α, 0 ≤ |α| < αcrit,

0, αcrit < |α|,
(49)

Table 2 List of tire
parameters

Parameter Front axle Rear axle

Contact patch half-length (a) 0.05 m 0.05 m

Cornering stiffness (C) 67 kN 50 kN

Sliding friction coefficient (μ) 0.88 0.88

Rolling friction coefficient (μ0) 1 0.88

Vertical axle load (Fz) 7014 N 7014 N
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where

μ1 = −a

3
φ1,

μ2 = −aφ2,

μ3 = −3aφ3,

μ4 = aC4

27μ3
0F

3
z

(
4

3
− μ

μ0

)
.

(50)

When linearized around zero side slip angle, the tire
model simplifies to F = Cα and M = −C̃α, where
C̃ = − a

3C .
The tire parameter values used in the paper are listed

in Table 2.

A.2 Coefficient matrices of the linearized vehicle mod-
els

The linearized version of the kinematic vehicle model
introduced in Sect. 2.1 includes the system and input
matrix

Akin =
[
0 V
0 0

]
, Bkin =

[
0

V/ f

]
. (51)

The dynamic vehicle model with assigned steering
angle from Sect. 2.2 leads to the coefficient matrices

Adyn =

⎡
⎢⎢⎣
0 V 1 0
0 0 0 1
0 0 A33 A34

0 0 A43 A44

⎤
⎥⎥⎦ , Bdyn =

⎡
⎢⎢⎣

0
0
B3

B4

⎤
⎥⎥⎦ , (52)

with elements

A33 = (CF( f − d) − CRd − C̃F − C̃R)dm − (CF + CR)JC
mV JC

,

A34 = CF f (md( f − d) − JC) − C̃Fmd f

mV JC
− V,

A43 = dCR − ( f − d)CF + C̃F + C̃R

V JC
,

A44 = C̃F − CF( f − d) f

V JC
,

(53)

and

B3 = CF(JC − md( f − d)) + mdC̃F

mJC
,

B4 = CF( f − d) − C̃F

JC
.

(54)

Finally, the linearization of the dynamic vehicle
model with torque steering (Sect. 2.3) results in

Aservo =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 V 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 Ã43 Ã44 Ã45 Ã46

0 0 Ã53 Ã54 Ã55 Ã56

0 0 Ã63 Ã64 Ã65 Ã66

⎤
⎥⎥⎥⎥⎥⎥⎦

, (55)

Bservo = [
0 0 0 B̃4 B̃5 B̃6

]T
, (56)

where the elements of the system matrix Aservo are

Ã43 = CF(md(d − f ) + JC) − mdkp
mJC

,

Ã44 = (−C̃R − (CF + CR)d + CF f )dm − (CF + CR)JC
mV JC

,

Ã45 = CF f (md( f − d) − JC)

mV JC
− V,

Ã46 = −dkd
JC

,

Ã53 = CF( f − d) + kp
JC

,

Ã54 = (CF + CR)d − CF f + C̃R

V JC
,

Ã55 = −CF f ( f − d)

V JC
,

Ã56 = kd
JC

,

Ã63 = −C̃F JC − CF( f − d)JF − kp(JF + JC)

JF JC
,

Ã64 =
(
−C̃R − (CF + CR)d + CF f

)
JF + C̃F JC

JF JCV
,

Ã65 =
f
(
CF JF( f − d) + C̃F JC

)
JF JCV

,

Ã66 = −kd
JF + JC
JF JC

, (57)

and the input matrix Bservo consists of

B̃4 = dkp
JC

, B̃5 = − kp
JC

, B̃6 = kp
JF + JC
JF JC

. (58)

A.3 Controller saturation

In order to avoid numerical issues during the con-
tinuation process, the saturation function in Eq. (28)

123



On the global dynamics of path-following control of automated passenger vehicles 8251

was smoothed out using second-order polynomials as
follows:

sat(δdess ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−δsat, if δdess ≤ −δsat − c,

δdess + (−δsat−δdess +c)2

4c ,

if − δsat − c < δdess < −δsat + c,

δdess , if − δsat + c ≤ δdess ≤ δsat − c,

δdess − (δsat−δdess −c)2

4c ,

if δsat − c < δdess < δsat + c,

δsat, if δdess ≥ δsat + c,

(59)

The value of parameter c was set to 5 · 10−5.
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