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Abstract
In this paper, we focus on learning the time delay and nonlinearity of autonomous dynamical sys-
tems using trainable time delay neural networks. We demonstrate that, with delays trained together
with weights and biases, the trained neural networks may approximate the right hand side of de-
lay differential equations. It is shown that data collected from the vicinity a stable equilibrium or
limit cycle do not contain rich enough dynamics, therefore the trained networks can have very poor
generalization. However, including data about the transient behavior can significantly enhance the
performance, and similar improvements can be achieved when data collected near a chaotic at-
tractor is utilized. We also evaluate how the learning performance is affected by the selected loss
function and measurement noise. Numerical results are presented for learning examples: Mackey-
Glass equation and a predator-prey model.
Keywords: trainable time delay neural networks, autonomous nonlinear systems

1. Introduction

Time delay systems widely exist in the physical world and they are usually modelled with de-
lay differential equations which have been be studied extensively using analytical and numerical
techniques (Insperger and Stépán, 2011; Fridman, 2014; Breda et al., 2015). Besides using first
principles when deriving the equations with explicit time delays, data-driven methods are also a
crucial part for obtaining time delay system models. Most of these data-driven methods require
some knowledge on the nonlinearity or the time delays of the systems. For instance, the input de-
lay was estimated online together with the parameters of linear system in (Ren et al., 2005). The
state delay was identified in (Bayrak and Tatlicioglu, 2013) with knowledge of nonlinearity, while
in (Schulze and Unger, 2016) the state delay was estimated from frequency-domain data using a
reduced-order model. Multi-model approach with expectation maximization algorithm was applied
to identify the time delays from input-output data in discrete time in (Chen et al., 2014). The non-
linearity can be learned with the help of sparse identification of nonlinear dynamics in continuous
time when the delay is known; see (Breda et al., 2022).

Meanwhile, neural networks and deep learning algorithms have demonstrated their powerful
ability in function approximation, which may greatly benefit the learning of time delay systems
from data. On one hand, time delays were introduced in static feed-forward neural networks for
speech recognition in (Waibel et al., 1989). This was further extended to adaptive delays which can
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be trained together with weights and biases. The corresponding algorithms were typically imple-
mented in discrete time, where the delays were introduced to represent the memory effects with no
physical meaning; see (Lin et al., 1992; Yen, 1994; Yazdizadeh and Khorasani, 2002). On the other
hand, delays were also incorporated into continuous-time Hopfield networks (Marcus and Wester-
velt, 1989) for modeling the oscillatory behavior caused by hardware delays. These networks are
treated as delay differential equations, and the delays have clear physical meaning. The stability and
bifurcations in continuous-time delay networks were studied, e.g., by Campbell et al. (1999) and by
Zhang et al. (2014). Also, Ren and Rad (2007) provided an online algorithm for estimating a single
input delay in a time delay neural network in continuous time.

Recently, following the successful implementations of the neural ordinary differential equations
by Chen et al. (2018), neural differential equations are gaining popularity in the field of deep learn-
ing. Neural delay differential equations with a single fixed delay were introduced in (Zhu et al.,
2021) for capturing trajectories that intersect in lower dimensional state spaces. These continuous-
time neural networks are considered as a type of recurrent neural networks since the network output
of the previous time step affects the current network input when performing recursive simulations.
These simulations, however, drastically slow down the training, especially when the state contains
time delays; see (Zhu et al., 2021; Ji and Orosz, 2022). To accelerate the training process, the direct
output of the network, which gives the time derivative of the state, can be used in the loss function
as in Ji et al. (2021). Since the neural networks with trainable delays are able to represent the right
hand sides of delay differential equations, they are interpretable and can be analyzed using the tools
developed for delay differential equations.

In this paper, we study the algorithms orignally proposed in Ji et al. (2021), and apply it to learn
the dynamics of nonlinear autonomous delay systems from limited set of trajectories. Different from
learning systems with control input, stable autonomous systems converge to steady-state solutions,
such us equilibria or limit cycles. We demonstrate that once the data used for training is from the
vicinity of a steady state solution, the model trained by such data does not generalize well. We pro-
pose to include transients in the data in order to improve the learning performance and demonstrate
that similar improvements can be observed when utilizing data from chaotic motion. We investigate
the learning performance while considering different loss function and examine the robustness of
the algorithms under measurement noise. In Section 2, we briefly introduce the learning algorithm
with time delay neural networks and define a group of loss functions based on state derivative. In
Section 3, we summarize the existing challenges in learning the autonomous time delay systems.
Examples of learning the dynamics of the Mackey-Glass equation and a predator-prey model are
presented in Section 4. Conclusions are drawn and future work is laid out in Section 5.

2. Learning algorithm with neural networks

Autonomous time delay systems can be formulated as

ẋ(t) = G(xt), (1)

where x ∈ Rn and xt ∈ C([−τmax, 0],Rn) represents the space of continuous functions. Namely,
we define xt(ϑ) := x(t+ ϑ), ϑ ∈ [−τmax, 0] where τmax > 0 is the maximum delay. The functional
G maps the Banach space C([−τmax, 0],Rn) to Rn. For systems with finite number of delays
0 ≤ τ1, τ2, . . . , τd ≤ τmax, (1) can be written as

ẋ(t) = g(xt), (2)
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where

xt =

x(t− τ1)
...

x(t− τd)

 ∈ Rnd, (3)

and g is a nonlinear function such that g : Rnd → Rn. The particular form of g and the values of
the delays τ1, τ2, . . . , τd may not be known and the task is then to obtain the approximate system

ˆ̇x(t) = net(x̂t), (4)

via learning from the trajectories x(t). Here net represent the nonlinear map between the input and
output of a neural network. This way the neural network represents the right hand side of a delay
differential equation. Below we specify how such networks can be constructed.

Trainable time delay neural networks: Consider a time delay neural network described by

zt1 = f(W1z
t
0 + b1),

ztl = fl
(
Wlz

t
l−1 + bl

)
, l ≥ 2, . . . , L,

(5)

where ztl denotes the output of layer l at time t. The input of the network zt0 consists of the delayed
values of the signal zt0 collected in the vector

zt0 =

z
t−τ1
0
...

zt−τd
0

 , (6)

with input delays 0 ≤ τ1, · · · , τd ≤ τmax. That is when we use the time delay neural network
to learn the dynamics of (2), we use zt0 = xt; cf. (3) and (6). However, assuming that trajectory
data is available at time moments t = i∆t, i ∈ Z, and that delays evolve continuously during the
learning process, t− τ may not fall on one of the mesh points. By defining α ∈ [0, 1) such that
τ = (j + α)∆t, the delayed state can be expressed using linear interpolation:

x(t− τ) = x(t− (j + α)∆t) ≈ (1− α)x(t− j∆t) + αx(t− (j + 1)∆t). (7)

Then, as first proposed in Ji et al. (2020), the delays can be trained together with the weights and
biases via back-propagation. After the network is trained, we can use the delay differential equa-
tion (4) for analysis and numerical simulation. Note that to obtain x̂(t) with high accuracy simu-
lations may be performed with much smaller time steps than ∆t and with any preferred numerical
integration scheme

x̂(t) = DDEsolver(net, x0). (8)

Design of loss function: Loss functions can be constructed using the distance between the time
derivative predicted by the neural network and the time derivative given by the data with the help of
vector norms. If ẋ(t) is not measured, it can be obtained via numerical differentiation, e.g., Euler’s
method or central difference method at the mesh points, that is, ẋ(i∆t) is derived from x(i∆t),
x((i+ 1)∆t), and x((i− 1)∆t). At the same time ˆ̇x(i∆t) = net(xi∆t) is a direct prediction given
by the neural network. Then one may construct the loss function

L =
1

N

∑
i∈batch

∥∥ˆ̇x(i∆t)− ẋ(i∆t)
∥∥, (9)

3



LEARNING THE DYNAMICS OF AUTONOMOUS NONLINEAR DELAY SYSTEMS

where N is the number of output data used for updating within one batch and i marks the location
of the data point along the trajectory. The norm ∥ · ∥ can be chosen as any distance measure. In this
paper, we examine the different distance measures and assign weights for each data point depending
on its location along the trajectory. In other words, we consider a weighted loss function

Lp =
1

nN

∑
i∈batch

n∑
j=1

wi

(
ˆ̇xj(i∆t)− ẋj(i∆t)

)p
. (10)

In particular, we compare results for the average loss with wi = 1 and the weighted loss with
wi =

1
i∆t while using p = 1, 2.

One can also use the distance between the data x(t) and the neural network simulation and
define the loss

L =
1

H

H∑
i=1

∥∥x̂(i∆t)− x(i∆t)
∥∥, (11)

where H is the simulation horizon from each given initial history x0. In this paper, we train the
networks using the derivative loss (10), and highlight that small derivative loss (10) does not always
lead to a small simulation loss (11). Compared to the work in Ji and Orosz (2022) where the simu-
lation loss is used for training, the usage of only the derivative loss has much less computation and
serves as an alternative. We also thoroughly discuss the limitations of this alternative method and
show how the data quality (including the richness of the dynamics and measurement noise) affects
the learning performance. An example of learning two-state time delay system further illustrates
the potential of this algorithm.

Backpropagation with respect to time delays: In the training algorithms, the gradient of the
loss function with respect to the parameters are necessary for the iterative update. The gradients
of the loss (10) with respect to the weights and biases, i.e., ∂L

∂Wl
and ∂L

∂bl
, can be calculated via

backpropagation. The gradient of the loss with respect to the time delay at time t is given by

∂L
∂τk

=
∂L

∂x(t− τk)

∂x(t− τk)

∂τk
=

∂L
∂x(t− τk)

(
− ẋ(t− τk)

)
, (12)

where ∂L
∂x(t−τk)

is the gradient with respect to the delayed state and ẋ(t− τk) is the time derivative
of x at t− τk. As x(t) is only available at the discrete time steps t = i∆t, i ∈ Z then t− τ does
not necessarily coincide with a mesh point. Again using τ = (j + α)∆t with α ∈ [0, 1) we obtain

ẋ(t−τ) = ẋ(t−(j+α)∆t) ≈ x(t− j∆t)− x(t− (j + α)∆t)

α∆t
≈ x(t− j∆t)− x(t− (j + 1)∆t)

∆t
,

(13)
where in the first approximation we used Euler’s method while in the second one we utilized the
linear interpolation (7). In this work, we use the MATLAB nnet toolbox to calculate the gradients.
Once the gradients are obtained, one can choose any gradient-based methods for updating the pa-
rameters in the network. In this paper, we use adaptive moment estimation; see (Kingma and Ba,
2015). The learning rates used for the weights and biases and those used for time delay parame-
ter can be different. Here, these are tuned manually while observing the training loss in multiple
epochs.
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3. Existing challenges in learning

Data quality and system complexity: Learning the autonomous delay systems that converge
to a stable equilibria or stable limit cycles may present fundamental challenges due to the lack
of dynamics in data. This may be especially difficult when the equilibrium or the limit cycle is
strongly attractive, that is, when the leading eigenvalue of the infinitesimal generator has small
real part or when the leading eigenvalue of the monodromy operator is small in magnitude; see
(Insperger and Stépán, 2011). In such cases, the steady state solution occupies a large portion of
the data and we say that the data is of “low quality” (even if it does not contain noise). If the
transient part does not have enough portion in the training data, it is often treated as an “outlier” by
the training algorithms, therefore the trained network does not generalize well. Incorporating more
transient data can be achieved by setting the initial conditions further away from the attractors. We
remark that autonomous systems with high behavior complexity typically generate “high quality”
data for learning, even without transients. For instance, models learned from chaotic attractors
usually generalize well (Lin et al., 1992; Ji and Orosz, 2022; Goldmann et al., 2022).

While higher behavior complexity facilitates better learning, increasing the system complexity
typically makes learning more difficult. For example, a scalar system is easier to learn compared to
a system with vector valued states as in the latter case the learning often gets stuck in local minima.
Increasing the complexity of the networks may help one to avoid such undesired behavior.

Derivative vs. simulation loss: As mentioned in (Ji et al., 2021), there is a fundamental difference
between using the derivative loss (9) and the simulation loss (11). Once we train the network using
the direct prediction of derivatives, the inputs to the network are taken from the data, which are
always accurate, i.e., we use net(xt) instead of net(x̂t) in (4). Contrarily, once simulating the
network, the inputs are obtained from previous simulation steps while generating the solution of
(4) from the initial history x0; see (8). Thus, the prediction can deviate from the training data and
may enter regions in the state space where the network is untrained. One example of inconsistency
between derivative and simulation loss is when the network learns numerical differentiation instead
of the right hand side. In this case, the network gives small derivative loss with a small delay but
indeed it fails in terms of simulation. Such behavior was also observed in (Goldmann et al., 2022),
where a one-step-ahead prediction loss, which is equivalent to the derivative loss, was considered,
and the loss function had a local minima at a very small delay value.

Robustness to measurement noise: One may observe from the gradient calculation (12) and the
loss function (9) that the algorithms rely heavily on the state derivatives. If the states are measured
with added noise, the time derivatives obtained via numerical differentiation and the state estimates
obtained via linear interpolation are largely affected by the noise and the time step used. Smaller
time step ∆t leads to larger noise in the derivative, while larger time step leads error in the differ-
entiation. For example, consider that white noise with zero mean and standard deviation σx = 0.02
is added to x through the measurements, then the time derivatives obtained from Euler’s methods
with ∆t = 0.05 results in additive noise with zero mean and standard deviation σẋ =

√
2σx
∆t = 0.57

for ẋ. If the central difference method is used to obtain the derivative, the standard deviation of
the noise added to ẋ reduces to 0.28. Thus, choosing a robust numerical differentiation method and
applying appropriate filtering are critical for calculating the time derivatives accurately, which is an
important research topic on its own; see (Fioretti and Jetto, 1989; Van Breugel et al., 2020).
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4. Learning Results

Mackey-Glass equation: First, we examine the algorithm to learn the dynamics of the Mackey-
Glass equation (Mackey and Glass, 1977). This scalar autonomous time delay system is given as

ẋ(t) =
βx(t− τ)

1 + (x(t− τ))δ
− γx(t), (14)

and we use β = 4, γ = 2, δ = 9.65. For delay τ = 0.5, the system approaches a stable limit cycle
(of period Tp ≈ 1.57), while for τ = 1, the system exhibits chaotic behaviour. For both τ val-
ues we use MATLAB dde23 to generate 10 trajectories using constant initial histories x(t) ≡ c,
t ∈ [−τmax, 0] where c = 0.5 + i/9, i = 0, . . . , 9. To demonstrate the influence of the data quality,
we train the neural network with trajectories of the same length while using different sections from
the simulations. As shown in Fig. 1, we consider two types of training data sets, one discards the
transients and the other includes the initial constant history. The length of all training trajectories
is set to be Ttr = 7 (on the left of the solid line) and the testing part is the following data segment
of length Tts = 3. Note that, the length of the trajectory does not affect the training performance as
long as it is larger than the maximum length of the history Tmax and the trajectories cover enough
area of the state space. In other words, the dynamics of the trajectories is more important than the
length of the trajectories. The sampling time step is ∆t = 0.05. We set τmax = 1 for the limit cycle
data and τmax = 2 for chaotic data. The data on the left of dashed line is only used as initial history
and the output data is obtained from the right of this line.

We use a two-hidden-layer network with 5 neurons with tanh type of nonlinearity in each layer
to learn the Mackey-Glass dynamics. The input vector to the network is constructed using states
with one fixed zero delay and one trainable delay. We first conduct massive training with different
data sets and loss functions. For each combination of training data set and loss function, we run
the training process 100 times from different initial parameters (with maximum iteration 2000 in
each epoch, batch size N = 10, learning rate ηθ = 0.1 for weights and biases and learning rate
ητ = 0.001 for the delay). The trainable delay τ is initialized uniformly between [0, τmax], biases
are initialized as zeros, weights are initialized using the Glorot initialization (Glorot and Bengio,
2010).

The final learned delay corresponding to the minimal training loss is plotted in Fig. 2. The blue
histograms represent the probability of the delay converging to a certain value and the orange dots
mark the learned delay and the corresponding training loss. Besides the minima around the ground
truth delay, we observe some other local minima that the networks may converge to. Observe
that including the history and using weighted loss can help to reduce the chance of converging to
undesired local minima.

For limit cycle data, the average L2 loss performs significantly better than the average L1 loss
when the initial history is included; cf. panels (b) and (c). The reason behind this is that the L1

loss tends to ignore “outliers” in the data, while here the “outliers” are the transients which are the
most important parts in terms of learning the dynamics. The network generalizes well outside the
training data set only if these transients are taken into account. This also explains why the weighted
loss performs better: it assigns more weights to the transient part of the data. We can also see
that the chaotic data has better delay learning performance compared to the limit cycle data since
the training data covers a larger part of the state space. With the initial history included and using
weighted L2 loss, both training data sets lead to a very high success ratio of learning the correct
delay; see panels (d) and (h).
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Figure 1: Training and testing data for learning Mackey-Glass equation. Top row: simulation data
generated for τ = 0.5; bottom row: simulation data generated for τ = 1. The solid line
divides the data into training and testing and the data on the left of the dashed line is
given as initial history (whose length corresponds to the maximum allowed delay τmax).
We consider different segments of data for training: (a), (c) are the segments without
the initial transients, starting from t = 10; (b), (d) are the segments with initial constant
history, starting from t = −τmax.

In addition to checking the learning of the correct delay, we examine the network predictions
on training and testing data. The first row of Fig. 3 shows two epochs of training from same initial
delay value 0.8. In panel (a) one run (purple) converges to τ = 1 while the other (green) converges
to τ = 0.45. Limit cycle data (generated with τ = 0.5) without transients are used for training and
the average L1 loss is chosen. Since the limit cycle data is repeating itself, there is no difference
whether we use average vs. weighted loss and whether we use L1 vs. L2 loss. Even though the
derivatives fit very well on the training set for both runs in panel (b), the simulation of the network
with delay τ = 1 (purple) diverges in panel (c). This demonstrates that small derivative loss does
not guarantee small simulation loss. During the simulation small derivative errors accumulate and
the trajectory may leave the region of training data. In the region where the network was not trained,
larger errors of the derivative prediction can result in unstable behavior. In panel (d) the networks
are tested while setting the time delay τ = 0.5 for a trajectory starting from a constant initial history
x(t) ≡ 0.5. The network which learned τ = 0.45 gives good predictions along the limit cycle, but
it fails to capture the transients. This shows that the network trained only on data from the vicinity
of the attractor generalizes poorly.

For comparison, the result for a network trained on chaotic data (generated with τ = 1) includ-
ing the initial history and using the weighted L2 loss is shown in the second row of Fig. 3. Panel (e)
demonstrates that the correct delay τ = 1 is learned in this case. This results in good performance

7



LEARNING THE DYNAMICS OF AUTONOMOUS NONLINEAR DELAY SYSTEMS

Figure 2: Convergence of 100 training epochs from initial delay values between [0, τmax]. The left
axis shows the (measured) probability of the learned time delay and the right axis shows
the corresponding training loss. The dashed line indicates the ground truth time delay.

Figure 3: The performance of networks trained with different data. (a)-(d): using limit cycle data
and average L1 loss; (e)-(h): using chaotic data and weighted L2 loss. (d) and (h): the
trained networks are tested using the initial history x(t) ≡ 0.5 and given delay τ = 0.5.

both for derivative and simulation as shown in panels (f) and (g). Moreover the network is also
able to give good predictions when the delay is set to τ = 0.5. This shows the independence of the
learned delay and nonlinearity, and highlights the generalizability of the network when it is trained
on high-quality chaotic data.
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Figure 4: Training performance under two different levels of white noise. Both networks have the
same initial delay 0.8 and are trained on chaotic data using weighted L2 loss.

We also present the learning performance under different levels of measurement noise in Fig. 4.
As shown in the top row, the delay is still learned when small noise is added to the data, however, the
noise does affect the learning of the nonlinearity as shown by the decreased accuracy of prediction
in panels (b) and (c) . The bottom row demonstrates that for stronger noise, the state derivatives fail
to guide the learning of the delay. One may try to reduce the noise by pre-processing the data but
this is beyond the scope of this paper.

Predator-prey model: Here we learn the dynamics of a two-state autonomous nonlinear delay
system, which is used to model the dynamics of a predator-prey dynamics[

ẋ1(t)
ẋ2(t)

]
=

[
rx1(t)− sx21(t)− px1(t)x2(t)

bpx1(t− τ)x2(t− τ)− dx2(t)−mx22(t)

]
, (15)

where the time delay τ indicates the maturation time of the predators. Simulation trajectories are
generated with parameters r = 1, a = 1, p = 4, b = 1.2,m = 0.1, d = 1, τ = 2 and constant his-
tory x(t) ≡ 0.1, 0.2, 0.3, 0.4. The training data set contains trajectories of length 34 (t ∈ [−τmax, 30])
with time step ∆t = 0.1. A two-hidden-layer network with tanh type of nonlinearity, one fixed zero
delay and one trainable delay is used considering τmax = 4. Training is performed with maximum
iteration 5000, batch size N = 50, and learning rates ηθ = 0.01, ητ = 0.001.

Figure 5 shows one training result with no noise added to the data while using the weighted
L1 loss. This system is not sensitive to the choice of loss measurement, i.e., both L1 and L2 loss
would work, since the initial part is not too much of an outlier compared to the rest of the trajectory.
Although the performance is similar, L1 loss does provide faster convergence in this example. The
initial delay is set to 3 and it converges to the correct value of τ = 2 during learning. The trained
network gives good predictions on the state derivative, however, the simulation of the network on
the last trajectory is not so accurate. This again shows inconsistency between direct prediction and
the simulation prediction. We remark that part of the last trajectory is very close to the boundary of
training data set and the portion of training data at that part of the state space is small.
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Figure 5: Training performance of the predator-prey model.

To show the robustness of the delay learning algorithm againts noise, we conduct another 100
training runs from different initial weights and biases but same initial delay 3 for different levels of
noise added. We define the success ratio of learning the delay as the number of learned delay falling
in the interval 2± 0.15 divided by the number of conducted runs. We observe from the Fig. 6, the
success ratio of learned delay drops sharply as the noise level exceeds some limit.

Figure 6: Evaluation of learning the delay from noisy data. (a) success ratio of learning the delay
for different levels of noise; (b) distribution of 100 learned delays. All the training runs
are initialized with different weights and biases but with the same initial delay 3.

5. Conclusion and future direction

We presented tools and discussed some fundamental challenges for learning autonomous nonlinear
delay systems. Without external excitation, it is difficult to obtain data with rich dynamics, therefore
the trained network may generalize poorly. Weighing the initial transient data or choosing the mean
squared error instead of the absolute error can help to learn the nonlinearity and the time delays.
Using direct derivative output in the loss function does not guarantee small error in the network
simulation and the learning performance may be sensitive to measurement noise. As a potential
solution, one may use the simulation error for validation, or consider the network simulation directly
in the training loss function. Introducing external inputs to generate trajectories may also help in
learning the dynamics of time delay systems. The state of the delay systems learned in this paper
were fully observed, and time delay in the states are constant and discrete. Future studies include
partially observed system/input-output data and learning time-varying or state dependent delays.
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