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Abstract— In this paper, we propose a data-driven predictive
controller for connected automated vehicles (CAVs) traveling in
mixed traffic consisting of both connected and non-connected
vehicles. We assume a low penetration of connectivity, with
only one connected vehicle in the downstream traffic. A model
predictive controller is designed to integrate multiple specifica-
tions, including safety and energy efficiency, while accounting
for the time delay in the longitudinal dynamics of the vehicle. A
data-driven prediction method based on the behavioral theory
of linear systems is proposed to model the relationship between
the speeds of the distant connected vehicle and the vehicle
immediately in front of the CAV. The proposed method is
evaluated using real traffic data and demonstrates improved
prediction accuracy and energy efficiency compared to model-
based prediction methods.

I. INTRODUCTION

Adaptive cruise control (ACC) was invented in the 1990s
and is now commonly used in passenger vehicles. Its purpose
is to maintain a safe distance from the vehicle in front while
driving at the desired speed. However, ACC relies on the
movement of the vehicle in front, so it can be sensitive
to changes in that vehicle’s speed. Predicting the future
movement of the preceding vehicle can be difficult because
of limited knowledge of traffic conditions downstream.

With vehicle-to-vehicle (V2V) connectivity, connected au-
tomated vehicles can access information about other vehicles
beyond their line of sight and potentially cooperate with
them in traffic [1]–[3]. Assuming all vehicles in traffic are
connected, extensive research has shown that controllers such
as cooperative adaptive cruise control (CACC) [4]–[7] and
platooning [8]–[10], have the potential to save energy and
improve traffic efficiency. However, the adoption rate of
connected automated vehicles is currently very low, and it
may take decades to reach a significant level of penetration.
Connected cruise control (CCC) is a control method that
only requires a low level of cooperation (status-sharing) and
has been shown via simulation and experiment to bring
significant benefits in energy efficiency [11], even with a
lean penetration of connected vehicles in traffic [12], [13].

Without V2V connectivity, there is often limited informa-
tion about traffic, making it difficult to predict the future
motion of the preceding vehicle. With V2V communication,
integrated with traffic models, the additional information
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can potentially improve the prediction. On one hand, car-
following models can be applied to simulate the vehicle
chain in the traffic from the distant connected vehicle to
the vehicle immediately in front. However, the number
of vehicles between is typically unknown, which requires
online estimation algorithms [14], [15]. On the other hand,
continuum traffic models [16], [17] and/or neural network
models [18] can be used for prediction, but these typically
require offline training.

To address aforementioned issues of model-based predic-
tion, we propose a data-driven prediction that directly cap-
tures the relationship between the distant connected vehicle
and the vehicle immediately in front. The behavioral theory
of linear systems provides theoretical foundation for our
method. In our data-driven approach, we do not need to
explicitly spell out the parameters of the model. Instead,
we provide a representation of the trajectory space and
predict future motions within that space [19]. Based on the
behavioral theory, data-enabled predictive control (DeePC)
was developed [20] and applied to quadcopter control [21]
and to design a cooperative control of connected automated
vehicles in mixed traffic [22], [23].

In this paper, we apply behavioral theory to predict the
motion of the preceding vehicle based on the information
of a distant connected vehicle, which is not required to
be automated. Thus, the connected cruise controller we
design may operate with lean penetration of connectivity and
automation. Specifically, we propose a data-driven method
to predict the motion of preceding vehicle based on the
information of connected vehicles in the downstream traffic.
The proposed method is evaluated with real human driving
data. Compared to model-based methods, the proposed data-
driven prediction achieves higher prediction accuracy and
results in better energy efficiency, while circumventing the
need for offline training and/or model calibration.

II. DYNAMICS AND MODELING

Consider a connected automated vehicle traveling in a
chain of vehicles consisting of connected vehicles and non-
connected vehicles. As shown in Fig. 1, the ego CAV has
access to the position and speed of the vehicle 1 immediately
in front via on-board sensors (like radar, camera or LIDAR).
In addition, when there is a connected vehicle (vehicle L)
in the downstream traffic, its position and velocity are also
accessible to the ego vehicle through V2V communication.
However, for the the non-connected vehicles driving between
the vehicle 1 and vehicle L, the number of vehicles and their
states are not available to the ego vehicle. We refer to these
vehicles as hidden vehicles.
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Fig. 1. Connected cruise control (CCC) strategy. The CAV (blue vehicle)
has access to the position and velocity of the HV 1 (red) immediately in
the front, and the distant CHV L (green), but it does not have access to the
states of non-connected hidden vehicles vehicles driving between vehicles
1 and L.

The longitudinal dynamics of the ego vehicle is given as

ṡ = v,

v̇ = − 1

meff

(
mgξ + kv2

)
+

Tw
meffR

.
(1)

Here the effective mass meff = m+ I/R2 incorporates the
mass m, the moment of inertia I of rotating elements, and the
radius R of wheels. In addition, g denotes the gravitational
acceleration, ξ denotes the rolling resistance coefficient and
k denotes the air drag coefficient. The speed is controlled
by the wheel torque Tw generated by the engine/electric
motors and the brakes. To highlight how the commanded
acceleration u influences the systems, we rewrite (1) as

ṡ(t) = v(t),

v̇(t) = −f
(
v(t)

)
+ sat

(
u(t− σ)

)
.

(2)

where

f(v) =
1

meff

(
mgξ + kv2

)
, sat

(
u(t−σ)

)
=

Tw
meffR

. (3)

Here we consider two additional physical effects: the time
delay σ from the powertrain, and the saturation resulted
from the limited engine/motor torque and power and braking
torque. More specifically, we consider the saturation function

sat(u) = min
{
m1v + b1,m2v + b2,max{umin, u}

}
, (4)

as is shown in Fig. 2(a).
In order to follow the desired acceleration ad, the control

command
u = f̃(v) + ad, (5)

is applied, where the term f̃(v) is used to compensate for
the nonlinear physical effects f(v). In this paper, we assume
perfect compensation and focus on the design of desired
acceleration ad. The dynamics (2) can be simplified to

ṡ(t) = v(t),

v̇(t) = a(t),

a(t) = sat
(
ad(t− σ)

)
,

(6)

Below we design the desired acceleration ad utilizing the
information of vehicle 1 and vehicle L. Such control design
is referred to as connected cruise control (CCC).

III. DATA-DRIVEN CONTROL DESIGN

In this section, we introduce our data-driven control design
method. We first introduce the framework of predictive
connected cruise control (PCCC) design, and then introduce
data-driven PCCC.
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Fig. 2. Nonlinear functions in PCCC controller design. (a) Saturation
function (4). (b) Range policy (9) and safety condition (10). (c) Time-
varying dmin in safety constraint (10).

A. Predictive Connected Cruise Control

Predictive connected cruise control (PCCC) [13] applies
model predictive control (MPC) that combines controller
design specifications and constraints into an optimization
problem, and solves it in a receding horizon fashion. The
optimization is usually formulated in discrete time. Thus,
we discretize the longitudinal dynamics (6) with time step
∆t and let σ = q∆t. This results in

s(k + 1) = s(k) + ∆t v(k) +
1

2
∆t2a(k),

v(k + 1) = v(k) + ∆t a(k),

a(k) = ad(k − q).

(7)

The position and velocity of the ego vehicle are combined
into the state x = [s v]⊤, while x̂1 = [ŝ1 v̂1]

⊤ denotes the
state predictions the vehicle 1 immediately in front.

In this paper, we choose objective function

ℓ(x, x̂1, a) =
(
ĥ−H(v)

)2
+ qaa

2, (8)

where ĥ = ŝ1 − s− l is the predicted headway depending
on the prediction of future motion of vehicle 1. The range
policy

H(v) = τv + d, (9)

characterizes the desired headway as a function of speed: we
can accept short headway when speed is low, but large dis-
tance is preferred at high speed. The second term penalizes
rapid acceleration or deceleration, to achieve better driving
comfort and energy efficiency. The parameter qa balances
the two objectives.

The safety constraint is given as

ĥ−Hmin(v) ≥ 0, Hmin(v) = τminv + dmin, (10)

where Hmin(v) denotes the minimum safe distance for
given velocity; see Fig. 2(b). We can choose dmin as a
function of prediction horizon to compensate for prediction
uncertainties [24]. As is shown in Fig. 2(c), dmin grows at
the beginning since the uncertainty grows with the prediction
horizon. After 6.5 [s], dmin decreases again assuming the
receding horizon control can deal with the uncertainties in
the following steps.
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In summary, the optimization problem is formulated as

min
a(0|k),...,a(Kf−1+q|k),ϵ

Kf∑
i=0

(
ĥ(i|k)−H

(
v(i|k)

))2

+ qa

Kf−1∑
i=0

a2(i|k) + qϵϵ,

s.t.

s(i+ 1|k) = s(i|k) + ∆t v(i|k)
+ 1

2∆t
2 a(i|k),

v(i+ 1|k) = v(i|k) + ∆t a(i|k),

 i = 0, . . . ,Kf − 1,

ĥ(i|k) = ŝ1(i|k)− s(i|k)− l,

ĥ(i|k)−Hmin

(
v(i|k)

)
≥ −ϵ,

0 ≤ v(i|k) ≤ vmax,

umin ≤ a(i|k),
a(i+ q|k) ≤ m1v(i+ q|k) + b1,

a(i+ q|k) ≤ m2v(i+ q|k) + b2,

a(i|k) = ad(k + i− q),


i = 0, . . . ,Kf ,

s1(0|k) = s1(k), s(0|k) = s(k), v(0|k) = v(k),
(11)

where x(i|k) means the predicted x(k + i) based on the
information available at time k. The equality constraints
x(i|k) = x(k), s1(i|k) = s1(k) and a(i|k) = ad(k + i− q)
enforce timely updates of the prediction based on the obser-
vation data, which serves as an implicit feedback. In addition,
ϵ is used to soften the safety constraint to ensure feasibility of
the optimization problem. We choose the weight qϵ = 106 to
put a heavy penalty on the violation of the safety constraint.

In PCCC, high quality of prediction ŝ1 is crucial for the
performance of the controller. With connectivity, the ego
vehicle has access to more information beyond line of sight
in the downstream traffic. Exploiting the correlation between
xL = [sL vL]

⊤ and x1 = [s1 v1]
⊤, we can potentially make

better prediction of the future motion of vehicle 1. However,
the correlation between xL and x1 is challenging to unveil
due to the hidden vehicles: we do not know either the number
of hidden vehicles nh, or the states of the hidden vehicles.
We introduce a data-driven method to solve these problems.

B. Behavioral Theory of Linear Time Invariant Systems

In this section, we provide background knowledge on
behavioral theory of linear time invariant (LTI) systems.
There are two representations of LTI systems [19]. On one
hand, an LTI system can be characterized by the input-output
relations, which is described by an autoregressive model with
exogenous input (ARX):

y(k + 1) =

Kp∑
i=0

ϕiy(k − i) +

Kp∑
i=0

ψiu(k − i). (12)

On the other hand, an LTI system can also be described by
a state-space model:

Σ : x(k + 1) = Ax(k) +Bu(k),

y(k) = Cx(k) +Du(k).
(13)

The state variable x is introduced to achieve the Markov
property. The two representations can be transformed back
and forth. Especially, the transform from ARX model to
state-space form is widely studied as realization problem.
The solution is to realization problem is not unique, and the
state-space model that has the minimum state dimension is
called minimum realization.

Classical system identification methods usually fit system
parameters from data, and make predictions on the system
behavior based on the fitted system parameters. On the other
hand, the behavioral theory of LTI systems does not require
explicitly writing down the system parameters, instead fo-
cuses on the subspace of all possible system trajectories.

Consider a minimal realization system (13) with state
x ∈ Rnx , input u ∈ Rnu and output y ∈ Rny . The behavioral
theory studies the space of system trajectories of length K:

WK(Σ) =
{
[u(0 : K − 1)⊤ y(0 : K − 1)⊤]⊤

|{u, y} are trajectories of (13)
}
,

(14)

where we introduced u(0 : K − 1) = [u(0) · · · u(K − 1)]⊤

and y(0 : K − 1) is defined similarly. Given the data of a
system trajectory ud(0 : T − 1) and yd(0 : T − 1) of length
T > K, we define the Hankel matrix of order K as

HK(ud)=


ud(0) ud(1) · · · ud(T −K + 1)
ud(1) ud(2) · · · ud(T −K + 2)

...
...

. . .
...

ud(K − 1) ud(K) · · · ud(T )

 ,
(15)

and HK(yd) is defined similarly. Then, if the trajectory
data is diverse enough, the space of system input/output
trajectories can be represented with the range spaces of
Hankel data matrices. The diversity of the input trajectory
is described by the persistence of excitation.

Definition 1 (Persistence of excitation [25]). The input
trajectory ud is persistent excitation of order K if the Hankel
matrix HK(ud) has full row rank.

The so-called Fundamental Lemma provides a representation
of WK(Σ).

Lemma 1 (Fundamental Lemma [25], [26]). If the data input
trajectory ud is persistent excitation of order nx +K, then
the space WK(Σ) can be represented as the range space of
the Hankel data matrix:

WK(Σ) = range

([
HK(ud)
HK(yd)

])
. (16)

C. Data-driven Prediction
In order to utilize the information from xL to predict

x1, as is shown in Fig. 3, one may train a car-following
model offline, estimate the number of hidden vehicles nh
online, and simulate the vehicle chain [13], [15]. However,
the prediction accuracy heavily relies on the quality of the
model. In this paper, we drop the intermediate steps, and
directly model the input-output relationship between xL and
x1. Specifically, we consider an LTI system that takes xL as
input and outputs x1; see the green box in Fig. 3,
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Fig. 3. Model-based and data-driven prediction. Model-based prediction
estimates the number of hidden vehicles and simulates the vehicle chain us-
ing car-following models calibrated offline. Data-driven prediction captures
the relationship between xL and x1 directly from data.

For PCCC (11), we need to make predictions of
ŝ1(i|k), i = 0, . . . ,Kf based on observations of input xL(j)
and output x1(j), j = 0, . . . , k. Due to the randomness
of human driver behavior, the persistence of excitation is
usually satisfied. Assume the length of initial condition is
Kp, then let K = Kf +Kp. By the Fundamental Lemma 1,
there exists a vector g ∈ Rk−K+1, such that

[
HK(xL(0 : k))
HK(x1(0 : k))

]
g =


xL(k −Kp + 1 : k)
x1(k −Kp + 1 : k)
xL(k + 1 : k +Kf)
x1(k + 1 : k +Kf)

 . (17)

Based on the historical data xL(k −Kp + 1 : k) and
x1(k −Kp + 1 : k) and the prediction of future trajectory
of xL(k + 1 : k +Kf), we can derive all the possible future
trajectory of x1(k + 1 : k +Kf). In practice, the system
with input xL and output x1 is not a perfect LTI system.
Taking the modeling error into consideration, we construct
the quadratic programming problem

min
g,e

∥e∥22 + λg∥g∥22, (18)

s.t.

[
HK(xL(0 : k))
HK(x1(0 : k))

]
g =


xL(k −Kp + 1 : k)
x1(k −Kp + 1 : k)
xL(k + 1 : k +Kf)
x1(k + 1 : k +Kf)

+


0
e
0
0

 ,
where λg is the regularization constant. Here we set
λg = 0.1.

Since we do not have extra information about the vehicle
L, one common choice is to assume its speed remains
constant

vL(j) = vL(k), j = k + 1, . . . , k +Kf . (19)

On the other hand, one can also model the speed of vehicle
L as a linear autonomous system with state x ∈ Rnx , output
y ∈ Rny , and the minimum representation

Σ′ : x(k + 1) = Ax(k),

y(k) = Cx(k).
(20)

The corresponding trajectory space is defined as

YK(Σ′) = {y(0 : K − 1)⊤| y is a trajectory of (20)}.
(21)

Similar to Fundamental Lemma 1, the following lemma gives
a data-driven representation of the trajectory space YK(Σ′).

Lemma 2. Let (20) be the minimum representation of the LTI
autonomous system Σ′. Assume that the initial state x(0) ̸= 0
is not an eigenvector or generalized eigenvector of matrix A.

320 350
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0 100 200 300 400 500
0

10

20

30

1 2 3 4 5 60

Fig. 4. Speed trajectories of human-driven vehicles 1-6 used in the paper.

Given a trajectory of (20) {yd(i)}T−1
i=0 , with K ≥ nx and

T ≥ K + nx − 1, the trajectories in space YK(Σ′) can be
represented by

YK(Σ′) = range
(
HK(yd)

)
. (22)

The proof is shown in the Appendix. Similar to (18),
the future trajectory of xL can be predicted with quadratic
programming

min
g,e

∥e∥22 + λg∥g∥22, (23)

s.t. HK(xL(0 : k))g =

[
xL(k −Kp + 1 : k)
xL(k + 1 : k +Kf)

]
+

[
e
0

]
.

IV. SIMULATIONS

In this section, we evaluate the proposed method with real
driving data. We compare the prediction accuracy of the
model-based method proposed in [13] and the data-driven
method proposed in this paper. In addition, we compare the
energy consumption of the corresponding PCCC designs.

We use data from a chain of 6 human-driven vehicles
traveling on a highway [27], see the speed trajectories in
Fig. 4. We place the CAV in the simulation in the position
of vehicle 0, and assume that this does not affect the behavior
of preceding vehicles. The ego vehicle follows vehicle 1
immediately in front, while also being connected to the
distant vehicle 6 through V2V communication. The distant
vehicle 6 frequently brakes and accelerates. These speed
perturbations travel backward along the vehicle chain and,
due to the string instability of human drivers, they grow when
they reach vehicle 1.

Here we compare the prediction accuracy of the model-
based method and the data-driven method. The detailed
description of the model-based method was described in [13],
and was briefly described in section III-A. Since we use
intelligent driver model (IDM) [28] for prediction, we refer
to it as IDM in the following text. We also use two variants
of the data-driven method proposed in section III-C. In the
first case, we assume that the speed of the distant vehicle 6
remains constant (19). We refer to this method as Hankel
const. In the second case, we model vL as autoregressive
process and apply the optimization (23). We refer to this
method as Hankel AR.

As is shown in Fig. 5(a), when the CAV detects that
the distant vehicle starts to brake, all methods predict that
vehicle 1 will decelerate. In panel (b) the remote vehicle 6
starts to accelerate and the model-based method (incorrectly)
predicts that the vehicle 1 accelerates immediately, while the

4
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Fig. 5. Predictions of v1 and vL at three different occasions.
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Fig. 6. The statistics of prediction error ṽ1 = v̂1 − v1. (a) Mean of ṽ1.
(b) Standard deviation of ṽ1.
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Fig. 7. Prediction error when using leading vehicles L = 2, 3, 4, 5, 6.

data driven methods capture that vehicle 1 first decelerates
and then accelerates. Finally, in panel (c) all methods provide
good predictions about the future behavior of vehicle 1.

Statistically, we can analyze the prediction errors in the

10 [s] prediction horizon. We compare the prediction of the
speed of vehicle v̂1 with the observed data v1. We compare
all the simulation instances in 6 datasets. The prediction
error ṽ1 = v̂1 − v1 is shown in Fig. 6, all three methods can
have accurate prediction for the near future: the mean of
prediction error is close to 0 and the standard deviation is
small. However, the model-based method suffers from great
underestimation as the prediction horizon grows. In addition,
the standard deviation of the prediction error using model-
based method grows much faster compared to those using
data-driven methods. For large horizon prediction, the mean
of the prediction error is still near zero, but the prediction
error shows a larger variance. One may observe a plateau
in Fig. 6(b) up to about 6 seconds. This is a result of the
perturbations imposed by the distant vehicle 6 takes about
6 seconds to reach vehicle 1. To further validate this, we
evaluate the prediction error while using different remote
vehicles, ranging from L = 2 to L = 6 in Fig. 7. Notice that
as the vehicle becomes more distant, the plateau becomes
more prolonged.

Due to the improvement of prediction accuracy, the data-
driven prediction method results in better energy efficiency.
The energy consumption per unit mass is defined as

w =

∫ T

0

v(t)g
(
v̇(t) + f(v(t))

)
dt, (24)

where g(x) = max{x, 0} and f is defined in (3). We sim-
ulate with model-based and data-driven prediction methods
for 6 datasets. Due to better prediction accuracy, the data-
driven method results in less braking and smoother speed
trajectory. The resulting energy consumption show that data-
driven prediction methods consume less energy compared
to model-based method. On average, Hankel const method
saves 8.5% energy compared to IDM method, and Hankel
AR method saves 9.6% energy compared to IDM method.

V. CONCLUSION

In this study, we introduced a data-driven predictive con-
nected cruise controller for connected automated vehicles
operating in mixed traffic environments comprising both con-
nected and non-connected vehicles. The proposed controller
utilized state information of remote vehicles beyond its line
of sight. We captured the input-output relationship between
the speed of the distant vehicle and the vehicle immediately
in front utilizing the behavioral theory of linear systems.
A model predictive controller, which considers safety and
energy efficiency, was designed to utilize the prediction.
The proposed method was evaluated using real human driver
data and compared to model-based prediction methods. The
results indicate that the data-driven method has lower vari-
ance compared to the model-based method. Additionally, the
standard deviation of prediction error for different leading ve-
hicles highlights the benefits of connection to distant vehicles
beyond line of sight. This improvement in prediction leads
to around 10% improvement in energy efficiency compared
to a model-based predictor.

5



However, it should be noted that the data-driven prediction
method is computationally intensive as it conducts system
identification and prediction simultaneously, and requires a
significant amount of data. Additionally, the entire theory is
based on the behavioral theory of exact linear time-invariant
systems, which may not accurately represent real-world
traffic conditions. Future research will focus on increasing
data-efficiency and incorporating uncertainties into analysis.

APPENDIX

PROOF OF LEMMA 2

Proof. For system (20) define the operator

Ok(A,C) =


C
CA

...
CAk

 . (25)

Without ambiguity, we simply write Ok. Since (20) is the
minimum representation, (A,C) is observable and A has full
rank. Thus rank(Onx−1) = nx. Since K ≥ nx, we have

YK(Σ′) = range(OK) = nx. (26)

On the other hand, since T > K, we have

range
(
HK(yd)

)
=

{
T−K∑
i=0

giOKA
ix(0)

∣∣∣∣∣ gi ∈ R

}
. (27)

Assume that x(0) is not an eigenvector or generalized
eigenvector of A, the vectors x(0), Ax(0), . . . , Anx−1x(0)
are linearly independent. When T −K ≥ nx − 1,

range{x(0), Ax(0), . . . , AT−Kx(0)} = Rnx . (28)

Therefore

range
(
HK(yd)

)
= range(OK) = YK(Σ′). (29)

■
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