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Connected Cruise and Traffic Control for Pairs of
Connected Automated Vehicles

Sicong Guo , Gábor Orosz , Senior Member, IEEE, and Tamas G. Molnar , Member, IEEE

Abstract— This paper considers mixed traffic consisting of con-
nected automated vehicles equipped with vehicle-to-everything
(V2X) connectivity and human-driven vehicles. A control strategy
is proposed for communicating pairs of connected automated
vehicles, where the two vehicles regulate their longitudinal motion
by responding to each other, and, at the same time, stabilize
the human-driven traffic between them. Stability analysis is
conducted to find stabilizing controllers, and simulations are used
to show the efficacy of the proposed approach. The impact of the
penetration of connectivity and automation on the string stability
of traffic is quantified. It is shown that, even with moderate
penetration, connected automated vehicle pairs executing the pro-
posed controllers achieve significant benefits compared to when
these vehicles are disconnected and controlled independently.

Index Terms— Connected automated vehicle, connected cruise
control, traffic control, mixed traffic, stability analysis, time delay.

I. INTRODUCTION

VEHICLE automation continues to gain ground thanks to
its potential for driving efficiency, safety and comfort.

Recently, the field of longitudinal control for automated vehi-
cles (AVs) has seen a surge in research activity. Several works
have addressed adaptive cruise control (ACC) from aspects
like safety [1], [2], string stability [3], personalization of
driving behavior [4], and compensation of response delays [5],
while ACC systems have become widely available to the
public.

Apart from a single vehicle, traffic control [6], [7]
may also benefit from automation through the posi-
tive impact of AVs on large-scale traffic [8], [9]. AVs
can act as mobile actuators to improve traffic smooth-
ness [10], [11], [12], [13], [14], [15], [16] that was demon-
strated by experiments [17]. This helps to mitigate traffic
congestion and thereby reduce pollutant emissions and noise.
Moreover, it has been shown that controlling platoons of AVs
may further improve the flow of traffic [18], [19], [20].
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As such, many works have focused on vehicle platoons
that yield potential for cooperation. Specifically, platoons
of connected automated vehicles (CAVs) equipped with
vehicle-to-everything (V2X) connectivity may exchange infor-
mation and execute cooperative adaptive cruise control
(CACC) [21], [22], [23], [24], [25]. While CACC has signif-
icant positive impact on traffic [26], [27], its disadvantage is
that it requires full penetration of connectivity and automation
within an entire platoon.

Thus, interest has arisen in studying mixed traffic with
lean penetration of CAVs amongst connected human-driven
vehicles (CHVs). On one hand, a CAV may connect to CHVs
ahead of it, and obtain information beyond its line of sight for
use in control. This strategy, called connected cruise control
(CCC) [28], [29], has outperformed ACC in experiments [30].
On the other hand, the CAV may also connect to CHVs
behind it, and use the information from connectivity to control
and stabilize the following traffic. This approach was used as
connected traffic control (CTC) in [31] and [32], leading cruise
control (LCC) in [33] and [34], and considerate model predic-
tive control in [35]. With these strategies, connectivity can
bring great benefits for both the CAV and the following vehi-
cles, ultimately leading to safer, smoother, string stable traffic.

The benefits of connectivity have been shown clearly by the
literature above. Still, a sufficient penetration of connectivity is
required for these benefits [36]. Yet, connectivity is voluntary:
the owners of human-driven vehicles (HVs) may decide not to
invest in V2X devices and stay disconnected. At the same time,
the cost of establishing communication is marginal compared
to that of automation, hence it is more likely that AVs will be
upgraded to CAVs than that HVs become CHVs.

Therefore, instead of investigating CAV platoons or connec-
tivity between CAVs and CHVs, this paper focuses on mixed
traffic where pairs of CAVs get connected while traveling
amongst HVs. Connectivity allows the two CAVs to cooperate
and respond to each other in a mutually beneficial manner,
while controlling and stabilizing the traffic enclosed by them.

A. Concept, Contributions and Benefits

In this paper, we consider the scenario shown in Fig. 1,
in which a traffic fleet executes car-following on a single lane
of a straight road. The traffic consists of human-driven vehicles
(HVs) and connected automated vehicles (CAVs) equipped
with vehicle-to-everything (V2X) connectivity. The CAVs that
are outside the communication range of other CAVs act as
automated vehicles (AVs) without connectivity (green). The
CAVs that are within each other’s communication range form
pairs and respond to each other (blue and red).
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Fig. 1. Mixed traffic consisting of human-driven vehicles (HVs), automated vehicles (AVs), and pairs of connected automated vehicles (CAVs). The pairs
of CAVs enclose vehicle packets that they can directly regulate with the proposed controllers in order to stabilize traffic.

Fig. 2. Dynamics of mixed traffic without and with connectivity. (a) Human–
driven vehicles (HVs) and automated vehicles (AVs) executing adaptive cruise
control. With string unstable HVs, the AVs fail to mitigate the onset of a
congestion: the tail vehicle reduces its speed as much as the lead vehicle.
(b) The proposed pair of connected automated vehicles (CAVs) executing
connected cruise and traffic control. The CAVs successfully smoothen traffic:
the tail vehicle reduces its speed much less than the lead.

Specifically, we focus on controlling the CAV pair in Fig. 1
that encloses human-driven traffic. We assume lean penetration
of connectivity and automation, i.e., multiple HVs between the
CAVs. Our contributions are summarized as follows.

• Connected cruise and traffic control is proposed in which
a pair of CAVs regulates its longitudinal motion while
stabilizing the traffic between them.

• Stability analysis is conducted to find stabilizing con-
trollers, by accounting for the response delays of vehicles.

• Simulations are performed for a single CAV pair and
large-scale traffic including multiple CAV pairs.

• The effects of CAV penetration on the string stability
of traffic and the associated benefits of connectivity are
quantified via stability charts and simulations.

To highlight the relevance of these contributions, we show
that connectivity and the proposed control strategy for pairs of
CAVs yield benefits compared to scenarios without connectiv-
ity. These benefits are illustrated by an example in Fig. 2,
where two traffic fleets without and with connectivity are
compared via numerical simulations (with details given later).

Fig. 2(a) shows a heterogeneous chain of vehicles without
connectivity, including a lead vehicle, an AV, 5 subsequent
HVs, and another AV. The lead vehicle brakes, accelerates
and cruises at constant speed, while the subsequent vehicles

respond. The HVs exhibit string unstable behavior [37], where
they overreact to speed perturbations and reduce their speeds
more than the vehicle ahead of them. This undesired behavior
may lead to traffic congestion, unless mitigated by others.
As opposed, the AVs behave string stable and reduce their
speeds less than the vehicle preceding them. Still, due to
the relatively small number of AVs, the overall behavior is
undesired: the tail vehicle reduces its speed as much as the
lead.

Fig. 2(b) depicts the corresponding setup with connectivity,
where a CAV pair responds to each other using our proposed
controller. Despite the string unstable human driving, the CAV
pair successfully mitigates the onset of a congestion: the tail
vehicle reduces its speed much less than the lead vehicle. This
head-to-tail string stable [29] behavior is beneficial for traffic
smoothness, travel times, and fuel consumption.

The details leading to these results are discussed as follows.
Section II describes the proposed controllers, and the dynam-
ical models of CAVs and HVs. Section III discusses stability
analysis. Section IV presents the results using stability charts
and simulations, and quantifies the effect of CAV penetration.
Section V closes with conclusions.

II. CONTROL DESIGN FOR PAIRS OF CONNECTED
AUTOMATED VEHICLES

In this section, we propose longitudinal controllers for pairs
of connected automated vehicles (CAVs) traveling in mixed
traffic, and to this end, we model the dynamics of CAVs and
human-driven vehicles (HVs).

In particular, we focus on the vehicle packet highlighted in
Fig. 3(a), that travels on a single lane of a straight road. The
packet includes a pair of CAVs (called head and tail CAV,
in blue and red) and N number of HVs (gray). The packet
travels behind a lead vehicle (labelled as HV, although it could
be any vehicle type; see black). We number the vehicles with
indices increasing in the direction of motion, starting from the
tail CAV with index 0. We denote the headway of vehicle i
by hi , and its velocity by vi , i ∈ {0, . . . , N + 2}.

A. Dynamics and Control of Connected Automated Vehicles

We capture the dynamics of CAVs by delayed double
integrator models with saturation:

ḣ0(t) = v1(t) − v0(t),

v̇0(t) = sat
(
u0(t − σ0)

)
,

ḣN+1(t) = vN+2(t) − vN+1(t),

v̇N+1(t) = sat
(
uN+1(t − σN+1)

)
, (1)

in which u0 and uN+1 are the desired accelerations of the
tail and head CAV, respectively, that are considered as control
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Fig. 3. (a) A vehicle packet that consists of a pair of CAVs and HVs between
them. The CAVs seek to stabilize this packet. (b)-(e) Nonlinearities in their
longitudinal car-following dynamics. (f) Block diagram with the link transfer
functions describing the responses of each vehicle.

inputs. We assume that each CAV realizes the desired accelera-
tion by low-level controllers, unless it is above the acceleration
limit amax or below the braking limit −amin. This is captured
by the saturation function:

sat(u) = min {max{−amin, u}, amax}, (2)

shown in Fig. 3(b). Furthermore, we incorporate time delays σ0
and σN+1 into the model to account for actuation, communica-
tion and feedback delays. For simplicity, the dynamics of each
CAV, including the parameters amax, amin and σ0 = σN+1 = σ ,
are assumed to be the same.

The focus of this paper is a longitudinal control strategy for
the pair of CAVs that also allows stabilizing the traffic between
them. The control law is established based on [29], where
connected cruise control (CCC) was proposed for CAVs to
respond to connected (but not necessarily automated) vehicles
ahead of them, and on [32], where connected traffic control
(CTC) were introduced for CAVs to respond to connected
vehicles behind them. Our present work proposes a connected
cruise and traffic controller that integrates CCC and CTC for
pairs of CAVs, including the responses of both the tail CAV to
the head CAV and vice versa. This ultimately achieves benefits
beyond those of controlling a single CAV.

The proposed controller involves the responses of the tail
and head CAVs, respectively, to: (i) the headways h0 and hN+1
ahead of them; (ii) the velocities v1 and vN+2 of the vehicles
preceding them; and (iii) the velocities vN+1 and v0 of each
other. Specifically, the following control law is proposed:

u0 = α0
(
V0(h0) − v0

)
+ β0

(
W (v1) − v0

)
+ β0,N+1(W (vN+1) − v0),

uN+1 = αN+1
(
VN+1(hN+1)−vN+1

)
+ βN+1

(
W (vN+2)−vN+1

)
+ βN+1,0

(
W (v0) − vN+1

)
, (3)

where α0, αN+1, β0, βN+1, β0,N+1 and βN+1,0 are control
gains to be designed. This corresponds to CCC for the tail
CAV [29] and CTC for the head CAV [32]. These controllers

can be deployed on the CAVs in a decentralized fashion, while
the gains can be jointly designed to leverage cooperation.

The first terms on the right-hand sides of (3) allow the CAVs
to respond to the headways h0 and hN+1 by using the range
policies V0 and VN+1 that prescribe a desired velocity based
on the headway. We define these range policies by:

Vi (h) =


0 h ≤ hst,

vmax
h − hst

hgo,i − hst
hst < h < hgo,i ,

vmax h ≥ hgo,i ,

(4)

i ∈ {0, N + 1}; see Fig. 3(c). These command the CAVs to:
stop if their headways are below the standstill headway hst;
increase their speeds linearly for larger headways; and travel
at the speed limit vmax if their headways exceed the free-flow
headways hgo,i . Note that hgo can be designed to be different
for the two CAVs, and smaller hgo yields more aggressive
driving. As such, the range policies Vi of the CAVs are part
of the control design. We use the piecewise linear choice (4)
because it has been tested in experiments extensively [30],
while other nonlinear range policy choices could also work.

The second terms on the right-hand sides of (3) involve
response to the velocities v1 and vN+2 of the vehicles pre-
ceding the CAVs, or the speed limit, as given by the speed
policy:

W (v) = min{v, vmax}; (5)

cf. Fig. 3(d). Finally, the third terms on the right-hand sides
of (3) involve the response of the CAVs to each other, allowing
them to coordinate their motion for traffic stabilization. Note
that setting β0,N+1 = 0 or βN+1,0 = 0 would eliminate these
terms, yielding adaptive cruise control for the tail or head CAV,
respectively, that could be implemented without connectivity.

B. Human Driver Model

Now we present a selected car-following model that cap-
tures the behavior of human-driven vehicles (HVs). While the
proposed controller (3) does not rely on a human driver model,
this model will be used in our numerical case studies.

Similar to (1), we model the dynamics of each HV as:

ḣi (t) = vi+1(t) − vi (t),

v̇i (t) = sat
(
ui (t − τi )

)
, ∀i ∈ {1, . . . , N }, (6)

where ui is the acceleration of vehicle i commanded by
the human driver, and τi is the time delay that includes the
actuation delay of the vehicle and the driver reaction time.

For simplicity of exposition, we consider HVs with identical
driving behaviors, including the delay τi = τ and the driver
model that captures the commanded acceleration ui . Specifi-
cally, we use the optimal velocity model [38]:

ui = αh
(
Vh(hi ) − vi

)
+ βh(vi+1 − vi ), (7)

where αh and βh are driver parameters characterizing the
response to the headway and the velocity of the preceding
vehicle. Similar to (3), the response to the headway is through
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TABLE I
PARAMETERS OF THE NUMERICAL CASE STUDY

the range policy Vh, defined as:

Vh(h) =


0 h ≤ hst,

vmax
(2hgo,h − hst − h)(h − hst)

(hgo,h − hst)2 hst <h <hgo,h,

vmax h ≥ hgo,h.

(8)

Based on the experimental results in [39], this range policy is
considered to be piecewise quadratic as illustrated in Fig. 3(e).

The results throughout this paper, including Fig. 2, are
calculated using (1)-(8) and the parameters listed in Table I
(unless stated otherwise). For non-connected AVs, the special
case β0,N+1 = βN+1,0 = 0 of (3) is used as ACC.

III. STABILITY ANALYSIS

In this section, we study the dynamics of the vehicle packet
shown in Fig. 3(a). We formalize stability conditions, analyze
the head-to-tail string stability phenomenon in Fig. 2, and
design controller parameters that achieve stable traffic. The
analysis is performed in Laplace domain after linearization,
thus it yields local stability results w.r.t. small velocity and
headway perturbations around an equilibrium. We will demon-
strate the global nonlinear behavior afterwards via simulations.

A. Linearized Dynamics

We first linearize the dynamics and transform them to
Laplace domain. Linearization is done around the equilibrium:

vi (t) ≡ v∗, hi (t) ≡ h∗

i , ∀i ∈ {0, . . . , N + 1}, (9)

where all vehicles drive with uniform equilibrium speed v∗,
while keeping equilibrium headways h∗

i that may be different
for the individual vehicles, as given by: v∗

= V0(h∗

0) =

VN+1(h∗

N+1) = Vh(h∗

h), with h∗

i = h∗

h for i ∈ {1, . . . , N }.

To construct the linearized dynamics, we consider perturba-
tions around the equilibrium in the form:

vi (t) = v∗
+ ṽi (t), hi (t) = h∗

i + h̃i (t), (10)

and collect these perturbations into the state vector xi :

xi (t) =

[
h̃i (t)
ṽi (t)

]
, (11)

from which the speed fluctuations can be obtained by:

ṽi (t) = cxi (t), c =
[
0 1

]
. (12)

We derive and analyze the linearized dynamics under the
assumption that −amin < ui < amax and 0 < vi < vmax, i.e.,
where nonlinearities in (2), (5), (4) and (8) are differentiable.
The corresponding linearized model reads:

ẋ0(t) = ax0(t) + a0x0(t − σ)

+ bṽ1(t) + b0ṽ1(t − σ) + b0,N+1ṽN+1(t − σ),

ẋi (t) = axi (t) + ahxi (t − τ)

+ bṽi+1(t) + bhṽi+1(t − τ), ∀i ∈ {1, . . . , N },

ẋN+1(t) = axN+1(t) + aN+1xN+1(t − σ)

+ bṽN+2(t) + bN+1ṽN+2(t − σ) + bN+1,0ṽ0(t − σ),

(13)

with coefficient matrices listed in (35) in the Appendix.
These matrices contain κ0 =

dV0
dh (h∗

0), κN+1 =
dVN+1

dh (h∗

N+1)

and κh =
dVh
dh (h∗

h), that are the gradients of the range policies:

κ0 = κN+1 =
vmax

hgo,i − hst
, κh =

2vmax(hgo,h − h∗

h)

(hgo,h − hst)2 , (14)

cf. (4), (8) and Fig. 3(c)-(e). Note that according to (4) and (14)
the gradients κ0 and κN+1 are associated with the equilibrium
headways as

h∗

0 =
v∗

κ0
+ hst, h∗

N+1 =
v∗

κN+1
+ hst. (15)

Hence, larger range policy gradient means more aggressive
driving with smaller equilibrium headway and more compact
traffic.

We analyze the linearized dynamics (13) in Laplace domain
by formulating link transfer functions [29] associated with the
responses of each vehicle. With the link transfer function Ti, j ,
we relate the speed perturbations (denoted by Ṽ in Laplace
domain) of vehicles i and j , as follows:

Ṽ0(s) = T0,1(s)Ṽ1(s) + T0,N+1(s)ṼN+1(s),

Ṽ1(s) =

N∏
i=1

Ti,i+1(s)ṼN+1(s) =: T1,N+1(s)ṼN+1(s),

ṼN+1(s) = TN+1,0(s)Ṽ0(s) + TN+1,N+2(s)ṼN+2(s); (16)
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see the block diagram in Fig. 3(f). Assuming zero initial
conditions, the link transfer functions are obtained from (13):

T0,1(s) = c(sI − a − a0e−sσ )−1(b + b0e−sσ ),

T0,N+1(s) = c(sI − a − a0e−sσ )−1b0,N+1e−sσ ,

Ti,i+1(s) = c(sI − a − ahe−sτ )−1(b + bhe−sτ ),

TN+1,0(s) = c(sI − a − aN+1e−sσ )−1bN+1,0e−sσ ,

TN+1,N+2(s) = c(sI − a − aN+1e−sσ )−1(b + bN+1e−sσ ),

(17)

for i ∈ {1, . . . , N }. These link transfer functions can be calcu-
lated by substituting the coefficient matrices in (35), and their
expressions can be found in (36) in the Appendix.

Using the link transfer functions, we can describe the overall
response of the vehicle packet from vehicle N + 2 to vehicle
0 via the head-to-tail transfer function [29], G0,N+2:

Ṽ0(s) = G0,N+2(s)ṼN+2(s), (18)

which is expressed from (16) as:

G0,N+2(s) =

(
T0,1(s)T1,N+1(s)+T0,N+1(s)

)
TN+1,N+2(s)

1−
(
T0,1(s)T1,N+1(s)+T0,N+1(s)

)
TN+1,0(s)

.

(19)

By following [29], this head-to-tail transfer function can be
directly used for linear stability analysis.

B. Stability

In order to design the controllers of the CAVs, we formalize
stability conditions for the vehicle packet through the notions
of plant stability and string stability [29], [37], using the
head-to-tail transfer function. Ultimately, this leads to the
construction of stability charts that identify the controller
parameters associated with plant and string stable vehicle
packets, and hence guide the selection of these parameters.

Plant stability indicates that each vehicle in the fleet is
able to approach the equilibrium state. This is a fundamental
requirement from CAVs to be operational in practice. We ana-
lyze this by considering the characteristic equation:

D(G0,N+2(s)) = 0, (20)

where D(.) denotes the denominator. We denote the charac-
teristic roots satisfying this equation by sk with k ∈ N. The
plant stability condition is established as Re(sk) < 0, ∀k ∈ N,
i.e., all characteristic roots must have negative real parts. The
system is at the plant stability boundary if either a real root
s = 0 is located at the imaginary axis, satisfying:

D(G0,N+2(0)) = 0, (21)

or a complex conjugate pair of roots s = ±j�, with j2 = −1
and some � > 0, is located at the imaginary axis, satisfying:

Re(D(G0,N+2(j�))) = 0,

Im(D(G0,N+2(j�))) = 0. (22)

String stability indicates that speed perturbations are attenu-
ated as they propagate upstream along the traffic. This helps to
avoid traffic congestion caused by growing speed perturbations

on highways. Specifically, we rely on the notion of head-to-
tail string stability [29], wherein the speed fluctuation of the
tail vehicle |Ṽ0(jω)| is smaller than that of the lead vehicle
|ṼN+2(jω)| at any given frequency ω > 0. Therefore, the string
stability condition is established as:

|G0,N+2(jω)| < 1, ∀ω > 0. (23)

In fact, this can be stated equivalently as P(ω) > 0 with:

P(ω) :=
1
ω2

(
D(|G0,N+2(jω)|2)−N(|G0,N+2(jω)|2)

)
, (24)

where D(.) and N(.) denote denominator and numerator.
For the string stability boundaries, we consider two cases:

ω = 0 and ω > 0. For ω = 0, the boundaries are obtained by:

P(0) = 0, (25)

with applications of L’Hôpital’s rule to obtain P(0) as the
ω → 0 limit. For ω > 0, a family of string stability boundaries,
parameterized by the wave number K ∈ [0, 2π), is given by:

G0,N+2(jω) = e−jK , (26)

see [32]. Here one may write G0,N+2(jω) as the fraction:

G0,N+2(jω) :=
a0(ω) + jb0(ω)

a1(ω) + jb1(ω)
, (27)

in which a0(ω) and b0(ω) are the real and imaginary parts
of N(G0,N+2(jω)) while a1(ω) and b1(ω) are those of
D(G0,N+2(jω)). Then, (26) can be decomposed into real and
imaginary parts and rearranged to:

a1(ω) − a0(ω) cos K + b0(ω) sin K = 0,

b1(ω) − a0(ω) sin K − b0(ω) cos K = 0. (28)

To summarize, the plant stability boundaries are defined
by (21) and (22), whereas the string stability boundaries
are given by (25) and (28). These equations depend on the
controller parameters, such as β0,N+1 and βN+1,0. Thus, one
may express these parameters and depict the stability bound-
aries in the (β0,N+1, βN+1,0) plane. The boundaries obtained
from (21) and (25) are of the form βN+1,0 = f0(β0,N+1), the
boundary from (22) is a curve parameterized by � in the form
β0,N+1 = f1(�), βN+1,0 = f2(�), whereas the boundaries
from (28) are a family of curves parameterized by ω and
K as β0,N+1 = f3(ω, K ), βN+1,0 = f4(ω, K ). The specific
expressions of these boundaries can be found in the Appendix.

Depicting the stability boundaries leads to stability charts
as the end result of the analysis. The stability charts identify
the regions of controller parameters that yield plant and string
stable vehicle packet, so that these parameters can be selected
as stabilizing control design. We illustrate such stability charts
in the next section for representative cases.

IV. RESULTS

In this section, we present the results using stability charts
of the linearized system (13) and simulations of the nonlinear
system (1) and (6). We study the stability of mixed traffic
that involves the CAV pair with the proposed controllers.
We demonstrate that information from connectivity is highly
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Fig. 4. Stability chart of the scenario where a pair of CAVs encloses
N = 4 HVs. The light gray region enclosed by thick black curves is plant
stable, and the dark gray region encapsulated by all curves is plant and string
stable.

beneficial, and we analyze how the penetration of CAVs affects
stability and the compactness of stable traffic. The parameters
of this case study are in Table I. Note that a worst-case scenario
is considered in the sense that each HV is string unstable and
significantly amplifies speed perturbations.

A. Stability Charts

We show the stability boundaries obtained in the previous
section by visualizing them as stability charts. Fig. 4 shows
the stability chart in the (β0,N+1, βN+1,0) plane for a vehicle
packet with four HVs (N = 4). While the s = 0 plant stability
boundary does not show up, the s = ±j� plant stability
boundary is indicated by thick solid black line, and the plant
stable region is shaded light gray. Thick dashed black line
shows the ω = 0 string stability boundary, and thin curves in
color denote the ω > 0 string stability boundaries for various
values of K ∈ [0, 2π). These curves bound the plant and head-
to-tail string stable region in dark gray. The control gains shall
be selected from this region to achieve stability.

Fig. 5 shows stability charts for various headway response
gains αN+1 and range policy gradients κN+1 of the head
CAV. The representation of the charts is simplified so that
the boundary of the dark gray plant and string stable region is
shown by a single thin black line; cf. panel (d) that matches
the case of Fig. 4. Parameter αN+1 increases from bottom to
top, while κN+1 increases from left to right across the panels.
As κN+1 increases the stable region shrinks significantly for
larger αN+1, while it is less sensitive for smaller αN+1. It is
important to note that β0,N+1 ̸= 0 and β0,N+1 ̸= 0 are required
for stability for certain αN+1 and κN+1; cf. panel (f). This
indicates that response to the information from connectivity
(associated with β0,N+1 and βN+1,0) is essential for stability.

Importantly, the number N of HVs between the CAV
pair also affects the stability charts. Fig. 6 shows stability
charts for vehicle packets with various numbers of HVs:
N = 4, 5, 6, 7, 8, 9 (where panel (a) matches Fig. 4). Since
the human driver parameters are selected to be string unstable,
the head-to-tail string stable region shrinks as the number
N of HVs increases. Yet, we can establish plant and string
stable traffic control for up to N = 8 HVs by the right choice
of β0,N+1 and βN+1,0. Moreover, even when the setup is

Fig. 5. Stability charts of the scenario where a pair of CAVs encloses
N = 4 HVs, with various αN+1 and κN+1 parameter combinations. The same
shading scheme is used as in Fig. 4.

head-to-tail string unstable (N = 9), the proposed controller
may help to mitigate the instability. Notice that in practice it
may be difficult for the CAVs to identify the number N of
non-connected HVs between them. Thus, when designing the
CAVs’ controllers in (3) it is preferable to choose gains that
provide string stability robustly for a range of N (i.e., gains
that lie in the intersection of the stable domains calculated for
various N ). For example, the gain combinations corresponding
to the purple cross ensure string stability for N = 4, 5, 6, 7.
Alternatively, one may consider the aspects of energy effi-
ciency [40] or robustness w.r.t. human driver behavior [41]
when selecting gains from the stable domain.

B. CAV Penetration and the Compactness of Stable Traffic

According to the example in Fig. 6, the minimum penetra-
tion of connectivity and automation required for a stable vehi-
cle packet is 20% (the CAV pair can stabilize the packet with at
most N = 8 HVs). While this penetration may seem high, it is
important to recall that our case study involves a worst-case
scenario where every HV behaves string unstable and may sig-
nificantly amplify speed perturbations (i.e., |Ti,i+1(jω)| > 1 at
some ω > 0, with maximum |Ti,i+1(0.58j)| ≈ 1.03). We also
remark that the typical range of connectivity is a few hundred
meters [42]. Thus, it may not always be feasible to connect
across more than N = 8 HVs. As such, the proposed strategy
is able to stabilize even the worst-case vehicle packets that the
CAV pair may connect across.

Motivated by this example, now we dive deeper into how
the CAV penetration affects the stability and compactness of
traffic. We quantify a fundamental trade-off: more compact
traffic requires higher penetration of CAVs to maintain stabil-
ity. First, we define the penetration by:

p =
2

N + 2
, (29)
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Fig. 6. Stability chart of the scenario where a pair of CAVs encloses various
numbers of HVs. The same shading scheme is used as in Fig. 4.

since two CAVs form a vehicle packet with N number of HVs.
Furthermore, to characterize traffic compactness, we define the
average equilibrium headway of the vehicle packet:

h̄ =
h∗

0 + Nh∗

h + h∗

N+1

N + 2
. (30)

We seek to identify the relation between the penetration p
and the average headway h̄ such that the vehicle packet can be
maintained plant and string stable by the CAV pair. To achieve
this goal, we vary the number N of HVs and parameter κN+1
associated with both the head-to-tail string stability as well as
with the equilibrium headway h∗

N+1 = v∗/κN+1 + hst ahead
of the vehicle packet; cf. (15). We plot stability charts for each
(N , κN+1) parameter combination (similar to Figs. 5 and 6),
and we identify the maximum gradient κN+1,max for which
stable region exists as a function of N . Finally, we convert this
value to the minimum average headway h̄min as a function of
the penetration p using (15), (29) and (30):

h̄min =
p
2

(
h∗

0 +
v∗

κN+1,max
+ hst

)
+ (1 − p)h∗

h, (31)

where κN+1,max depends on p. We evaluate this formula for
v∗

= 20 m/s.
The resulting penetration versus average headway diagram

is shown in Fig. 7. It quantifies the trade-off between CAV
penetration, traffic compactness and stability: one typically
requires higher penetration of connectivity and automation to
achieve more compact stable traffic. Equivalently, one usually
needs higher average headway to stabilize traffic with lower
penetration of CAVs. For example, 10% CAV penetration
requires about 34 m average headway for stability while 50%
requires 31 m. Note that the trend is not fully monotonous,
and there is a local maximum on Fig. 7(b) around p = 30%.

C. Simulations

Finally, we present numerical simulation results for the
nonlinear system (1) and (6) to investigate the performance
and robustness of the CAVs’ controllers. The underlying
parameters are listed in Table I and at the figures.

Fig. 7. Relationship between the compactness of stabilizable traffic and the
penetration of connectivity and automation. (a) The maximum range policy
gradient κN+1,max of the head CAV that allows stable traffic as a function
of the number N of HVs between the two CAVs. (b) The minimum average
headway h̄min that allows stable traffic as a function of the penetration p of
CAVs. There is a fundamental trade-off: for smaller penetration of CAVs one
needs higher average headway (less compact traffic) to be able to maintain
stability.

Fig. 8. Simulation of the vehicle packet that shows the robustness of the
CAV pair’s controller against the number N of HVs, with (a) N = 5 and (b)
N = 7. The controller parameters correspond to the purple × in Fig. 6(b,d).

First, we simulate a single vehicle packet. Fig. 8 shows
simulation results considering the lead vehicle motion from
Fig. 2. Since the number N of HVs in the packet may
be unknown to the CAVs in practice, the robustness of the
controller with respect to N is demonstrated in the figure. The
same controller (with the same gains) is tested on setups with
different N : N = 5 (left) and N = 7 (right). In both cases, the
CAV pair successfully achieves head-to-tail string stability –
the tail CAV reduces its speed less than the lead vehicle –
while maintaining safe headways, with similar motion. In this
particular example, the tail CAV plays a bigger role in atten-
uating velocity fluctuations than the head CAV. Alternatively,
string stability could also be achieved through the smooth
driving of the head CAV, which was shown to be a successful
approach for a single leading CAV in [31], [32], [33], and [34].
Utilizing such approach can further develop the potential of
attenuating velocity fluctuations by the CAV pair.

Second, we study large-scale mixed traffic that consists of
HVs and CAVs, 100 vehicles in total. We fix the number
(penetration) of CAVs and distribute them randomly in traffic.
We form CAV pairs by going through the 100 vehicles from
head to tail. Whenever two CAVs have 1 ≤ N ≤ 7 HVs



GUO et al.: CONNECTED CRUISE AND TRAFFIC CONTROL FOR PAIRS OF CONNECTED AUTOMATED VEHICLES 12655

Fig. 9. Simulation of mixed traffic including 100 vehicles with various penetrations of CAVs. (a) String unstable human-driven traffic. (e) 100% penetration
of non-connected AVs executing ACC. (b)-(d) Without connectivity, 5%, 10%, and 20% penetrations of ACC-capable AVs are not able to mitigate the onset
of a traffic congestion. (f)-(h) With connectivity, 5%, 10%, and 20% of CAVs are able to mitigate the congestion by forming pairs and executing the proposed
control strategy. Note that connectivity (panels (g) and (h)) even yields smaller speed fluctuations than 100% non-connected ACC-capable AVs (panel (e)).

between them, they form a pair, and we move onto the next
unpaired CAV. If a CAV does not have other CAVs nearby
(N > 7) or follows another CAV (N = 0), it is labelled as
AV and commanded to execute adaptive cruise control (as
the β0,N+1 = βN+1,0 = 0 special case of (3)). Furthermore,
we make comparison with a no-connectivity baseline where
all CAVs are left unpaired and execute ACC as AVs.

Fig. 9 shows simulation results for 0%, 5%, 10%, 20%,
and 100% penetration of CAVs. The distribution of the dif-
ferent vehicle types in traffic is depicted at the top of each
panel. Gray color indicates HVs, green shows (non-connected)
AVs, while blue and red denote CAV pairs. Fig. 9(a) shows
the 0% penetration reference case of human-driven traffic,
which exhibits a stop-and-go congestion since HVs are string
unstable. This highlights the challenge for CAVs to stabilize
traffic. As opposed, the 100% penetration baseline in Fig. 9(e),
where traffic consists of ACC-capable AVs only, mitigates the
congestion through string stable behavior. While this scenario
is ideal, it is achieved by extremely large AV penetration.

Fig. 9(b)-(d) and (f)-(h) present more realistic, 5%, 10%
and 20% penetrations. Cases without connectivity (top) and
with connectivity (bottom) are compared, where CAVs act as
ACC-capable AVs and where nearby CAVs are paired, respec-
tively. The figure clearly shows that the proposed CAV pairs
(bottom) significantly improve traffic smoothness compared to
the no-connectivity baseline (top). Ultimately, string stability is
achieved at low, 10% CAV penetration, and speed fluctuations
further decrease as penetration increases (bottom). This cannot
be achieved with low penetration of non-connected AVs (top).
Moreover, low penetration of CAVs even outperforms the full
penetration of AVs without connectivity; cf. Figs. 9(e) and (h).

We remark that controller (3) does not have formal guar-
antees of maintaining safe distances ahead of the CAVs.
To remedy this, we tuned the controller such that the head-
way of each simulated vehicle was positive and no collision
occurred. We will seek to address guaranteed safety in our
future work. Furthermore, to avoid vehicles moving in reverse
(vi (t) < 0), we modified the input of each simulated vehicle
(both HVs and CAVs) to û (t) = max{u (t), −α v (t)} with

αv = 10 s−1. This affected the results close to zero speed only.
Finally, note that the lead vehicle motion from Fig. 2 was
considered in the simulation results. By exploring various lead
vehicle motions, we noticed the occurrence of a bistability
phenomenon in which speed perturbations decay for certain
lead vehicle motions but amplify for others. Studying the effect
of bistability is left for future work, and we restrict ourselves
to the specific lead vehicle motion from Fig. 2.

We further study the string stability of the 100-vehicle traffic
by quantifying the maximum speed fluctuation of each vehicle
relative to the lead vehicle, by introducing:

0i =
maxt≥0 |vi (t) − vi (0)|

maxt≥0 |v100(t) − v100(0)|
, 0̄ =

1
100

99∑
i=0

0i , (32)

where 00 < 1 implies head-to-tail string stability, while 0̄ is
an average stability metric across all 100 vehicles.

Fig. 10(a) shows the stability metrics 00 and 0̄ as a function
of the CAV penetration. For each penetration, 20 setups are
simulated in which the positions (indices) of CAVs in traffic
are allocated randomly, as illustrated for 15% penetration in
Fig. 10(b). Fig. 10(a) shows the mean and standard deviation
of the 20 simulation results. When all vehicles are HVs (0%
penetration), the 20 cases coincide, and most vehicles undergo
speed fluctuations more than twice of the lead (0̄ > 2). With
automation (nonzero penetration), two cases are compared:
without connectivity (i.e., AVs executing ACC, cf. the top of
Fig. 9) and with connectivity (i.e., CAV pairs, cf. the bot-
tom of Fig. 9). With connectivity, head-to-tail string stability
(00 < 1) is achieved at a minimum penetration of 10%.
As penetration increases, speed fluctuations further decrease
to 0̄ ≈ 0.4. In comparison, automation without connectiv-
ity achieves head-to-tail string stability only at penetrations
around 30% and speed perturbations only decrease to 0̄ ≈ 0.6.

Finally, we remark that if the penetration of CAVs is large
enough, then a given CAV may travel within the communica-
tion range of and could respond to multiple other CAVs. This
could lead to more complex CAV networks than the CAV
pair setup. Note that the problem of creating groups betweeni i v 
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Fig. 10. (a) Head-to-tail and average string stability metrics as a function
of the CAV penetration. By exploiting connectivity, stability can be achieved
at penetrations as low as 10%, while without connectivity one requires 30%
penetration. (b) Illustration of the 20 simulation setups with 15% penetration
that were used to obtain the stability metrics.

multiple CAVs is well studied in the literature, especially in
the context of truck platooning [43], [44]. As such, the control
law (3) is scalable to include the interaction of more that two
CAVs. For example, one may consider the extension:

ui=αi
(
Vi (hi ) − vi

)
+βi

(
W (vi ) − vi

)
+

∑
j∈Ji

βi, j (W (v j ) − vi )

(33)

where Ji is the set of CAVs that are in the communication
range of CAV i . The analysis of such larger CAV networks,
however, is more involved, since the number of tunable
control gains increases and the expression (19) of the head-
to-tail transfer function becomes more complex. To keep our
exposition simple, we presented the CAV pair setup only,
and excluded further CAV connections from the simulation
examples too. Considering general CAV networks could lead
to further benefits, and hence it is left for future work.

V. CONCLUSION

This work proposes connected cruise and traffic control,
wherein pairs of connected automated vehicles (CAVs) reg-
ulate their longitudinal motion amongst human-driven vehi-
cles to stabilize traffic, by exploiting vehicle-to-everything
(V2X) connectivity. Stability analysis and numerical simula-
tions are conducted to characterize the performance of the
CAV pair. It is shown that the CAV pair is able to significantly
improve the smoothness of traffic flow, which resembles the
phenomenon of Cooper pairs [45] in superconductors. The
trade-off between the required CAV penetration and the com-
pactness of stabilizable traffic is quantified via stability charts.
Moreover, large-scale traffic simulations show the impact of
CAV penetration on traffic smoothness and the benefits of
connectivity. Potential future work may include exploring the

energy efficiency of the CAV pair setup and ensuring formal
safety guarantees via control barrier functions.

APPENDIX

Here we present the technical details related to the stability
analysis of Section III, including the expressions of the link
transfer functions, and plant and string stability boundaries for
N > 0. The resulting formulas (39), (44) and (47) were used
to plot the stability charts in Section IV-A.

First, we introduce the following combined parameters:

ξi = αiκi , ηi = αi + βi , ζi = αi + 2βi − 2κi , (34)

i ∈ {0, N + 1, h}. Then, the coefficient matrices in (13) are:

a =

[
0 −1
0 0

]
, a0 =

[
0 0
ξ0 −(η0 + β0,N+1)

]
,

ah =

[
0 0
ξh −ηh

]
, aN+1 =

[
0 0

ξN+1 −(ηN+1 + βN+1,0)

]
,

b =

[
1
0

]
, b0 =

[
0
β0

]
, b0,N+1 =

[
0

β0,N+1

]
,

bh =

[
0
βh

]
, bN+1 =

[
0

βN+1

]
, bN+1,0 =

[
0

βN+1,0

]
. (35)

By substituting (35) into (17), the link transfer functions read:

T0,1(s) =
β0s + ξ0

s2esσ + (η0 + β0,N+1)s + ξ0
,

T0,N+1(s) =
β0,N+1s

s2esσ + (η0 + β0,N+1)s + ξ0
,

Ti,i+1(s) =
βhs + ξh

s2esτ + ηhs + ξh
,

TN+1,N+2(s) =
βN+1s + ξN+1

s2esσ + (ηN+1 + βN+1,0)s + ξN+1
,

TN+1,0(s) =
βN+1,0s

s2esσ + (ηN+1 + βN+1,0)s + ξN+1
. (36)

The s = 0 plant stability boundary is given by (21), that,
after substituting (19) and (36), leads to αN+1 = 0 and α0 = 0.
These boundaries do not appear in the (β0,N+1, βN+1,0) plane.
The s = ±j� plant stability boundary is given by (22). By sub-
stituting G0,N+2(j�) from (19) and (36) into (22), we get:

p1(�)β0,N+1 + q1(�)βN+1,0 + r1(�) = 0,

p2(�)β0,N+1 + q2(�)βN+1,0 + r2(�) = 0, (37)

where the coefficients are:

p1(�) = �3S − �2ηN+1,

q1(�) = �3S + �
(
w1(�) − �η0

)
,

r1(�) = �4(C2
− S2) + �3(ηN+1 + η0)S

− �2(ξN+1 + ξ0)C − �2ηN+1η0 + ξN+1ξ0,

w1(�) = �β00R(�) + ξ00I(�),

p2(�) = −�3C + �ξN+1,

q2(�) = −�3C + �
(
w2(�) + ξ0

)
,

r2(�) = 2�4SC − �3(ηN+1 + η0)C

− �2(ξN+1 + ξ0)S + �
(
ξ0ηN+1 + ξN+1η0

)
,

w2(�) = �β00I(�) − ξ00R(�), (38)
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with 0R(�) = Re
(
Ti,i+1(j�)N )

, 0I(�) = Im
(
Ti,i+1(j�)N )

,
S = sin (�σ), C = cos (�σ). Thus, the plant stability bound-
ary becomes:

β0,N+1 =
q2(�)r1(�) − q1(�)r2(�)

p2(�)q1(�) − p1(�)q2(�)
,

βN+1,0 =
p1(�)r2(�) − p2(�)r1(�)

p2(�)q1(�) − p1(�)q2(�)
.

(39)

The ω = 0 string stability boundary is defined by (24)
and (25). By substituting (19) and (36) into (24), we obtain:

P(ω)=ξ2
N+1ξ

2
0

1−02
I (ω)−02

R(ω)

ω2 +ξ2
N+1α0ζ0+ξ2

0 αN+1ζN+1

+2ξN+1α0(ξ0βN+1,0−ξN+1β0,N+1)
(
κ0

0I(ω)

ω
−1

)
+O(ω).

(40)

Note that limω→0 0R(ω) = 1 and limω→0 0I(ω) = 0 hold,
hence terms of 1−0R(ω) and 0I(ω) were absorbed into O(ω).
Then, one may take the limit ω → 0 to find the ω = 0 string
stability boundary via (25). By using the expression (36) of
Ti,i+1 and applying L’Hôpital’s rule, the following holds [32]:

lim
ω→0

0I(ω)

ω
=−

N
κh

, lim
ω→0

1−02
I (ω)−02

R(ω)

ω2 =
Nαhζh

ξ2
h

. (41)

This puts (25) into the form:

pβ0,N+1 + qβN+1,0 + r = 0, (42)

in which the coefficients read:

p = 2ξ2
N+1α0

(
1 + N

κ0

κh

)
,

q = −p
ξ0

ξN+1
,

r =
ξ2

N+1ξ
2
0

ξ2
h

Nαhζh + ξ2
N+1α0ζ0 + ξ2

0 αN+1ζN+1. (43)

This finally leads to the ω = 0 string stability boundary:

β0,N+1 = −
q
p
βN+1,0 −

r
p
. (44)

The ω > 0 string stability boundary is obtained from (28).
By using the expression of G0,N+2(jω) from (19) and (36),
one gets a0(ω) and b0(ω) as the real and imaginary parts of
N(G0,N+2(jω)), and one obtains a1(ω) and b1(ω) as those of
D(G0,N+2(jω)). After re-organizing (28), we have:

p′

1(ω, K )β0,N+1 + q1(ω)βN+1,0 + r ′

1(ω, K ) = 0,

p′

2(ω, K )β0,N+1 + q2(ω)βN+1,0 + r ′

2(ω, K ) = 0, (45)

where:

p′

1(ω, K ) = ω2βN+1 cos K + ωξN+1 sin K + p1(ω),

r ′

1(ω, K ) =
(
ωβN+1w1(ω) + ξN+1w2(ω)

)
cos K

−
(
ωβN+1w2(ω) − ξN+1w1(ω)

)
sin K + r1(ω),

p′

2(ω, K ) = ω2βN+1 sin K − ωξN+1 cos K + p2(ω),

r ′

2(ω, K ) =
(
ωβN+1w1(ω) + ξN+1w2(ω)

)
sin K

+
(
ωβN+1w2(ω) − ξN+1w1(ω)

)
cos K + r2(ω).

(46)

Therefore, the string stability boundaries are solved as:

β0,N+1 =
q2(ω)r ′

1(ω, K ) − q1(ω)r ′

2(ω, K )

p′

2(ω, K )q1(ω) − p′

1(ω, K )q2(ω)
,

βN+1,0 =
p′

1(ω, K )r ′

2(ω, K ) − p′

2(ω, K )r ′

1(ω, K )

p′

2(ω, K )q1(ω) − p′

1(ω, K )q2(ω)
. (47)
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