A bridge from extensive form games to spatial models.

- Assignments. Past & present.
 - Changes.
 - The importance of the next three weeks.
- Romer-Rosenthal.
 - The implication of trembling hands
- Median Voter Theorem.
- Two-dimensional agenda games.

Your Writing Assignment

- Take your paper, change three premises.
- Consider three criteria when making the changes:
 - Service to other scientists.
 - Service to society.
 - Testability and/or generalizability.
 - Explain your modeling choice using these criteria.
- To the greatest extent possible, use formal logic to demonstrate whether and how your revisions change the model's substantive implications.

Paper-related Assignment

- In class
 - A 15-20 minute presentation.
 - Up to five minutes. Overview.
 - Up to five minutes. Model.
 - At least five minutes. Connecting the model to the conclusions.
 - Up to five minutes. The changes you are thinking of making.

Overview Format

- M. Motivation
- NH. Null Hypotheses
- P. Premises
 - KEY. What choices did they make?
 - Would you make the same ones?
- C. Conclusions

Extensive Form Games

- Player moves can be treated as sequential or simultaneous.
- First Models:
 - Complete information games in which all aspects of the structure of the game –including player payoff functions -- is common knowledge.
 - Perfect information at each move in the game the player with the move knows the full history of the play of the game thus far.

The structure of a simple game of complete and perfect information.

- 1. Player 1 chooses an action a_1 from the feasible set A_1 .
- 2. Player 2 observes a_1 and then chooses a_2 from the feasible set A_2 .
- 3. Payoffs are $u_1(a_1, a_2)$ and $u_2(a_1, a_2)$.
 - 1. Moves occur in sequence, all previous moves are observed, player payoffs from each move combination are common knowledge.
 - 2. We solve such games by backwards induction.

The central issue is credibility

Spatial Utility in one dimension

- Utility is commonly defined by the distance between an outcome and an ideal point.
- Player i's utility is maximized when the outcome is located at her ideal point, *ideal_i*.
- In one dimension, it is common to assume: $-u_i(outcome, ideal_i) = -|outcome - ideal_i|.$
 - Such preferences are called "single-peaked."

A Simple Model of Delegation

- There is a status quo.
- The agent makes a proposal.
- There is complete information.
- The principal accepts or vetoes the proposal.

Romer and Rosenthal (1978)

- M. Monopoly power in public finance.
- NH. Agenda Control implies unlimited power.
- P₁. Two completely informed players: an agenda setter and a voter.
 - The setter wants to maximize his budget.
 - Voter preferences are single-peaked.
- P (technical). Single-peaked preferences. A continuum of voters. A single-dimensional policy space. Majority rule. Complete & perfect information.

R&R Premises

- There exists a status quo policy, $Q \in \mathcal{R}$.
- The setter makes a proposal $X \in \mathcal{R}$.
- The voter chooses a winner $Y \in \{X, Q\}$.
- Each player has an ideal point and single peaked preferences

$$- U_{S} = -|Y-S| - U_{V} = -|Y-V|$$

R&R Conclusions

- Suppose $V \leq Q$ (parallel solution for V > Q.)
- It is better for the voter to choose *X* only if $X \in [V (|V Q|), Q]$.
- If the voter is indifferent, she flips a coin.
- The setter's best response to his anticipation of voter reactions is
 - If $S \in [V-(|V-Q|), Q]$, then X=S=Y.
 - If $S \in [0, V-(|V-Q|))$, then X=max[0, V-(|V-Q|)]=Y.
 - If $S \in (Q, 1]$, then X=(Q, 1], Y=Q.
 - Trembling hand perfection implies *X*=*S*.
- In equilibrium, the outcome need not be the median voter's ideal point.
 - Prove it.

Trembling Hand Perfect NE

- An equilibrium is perfect if it is immune to the possibility that players, with some small probability, commit errors.
- Morrow, p. 193: Trembling-hand perfection tests the robustness of an equilibrium. It verifies that each player's strategy is a best response against small deviations.

R&R Example				
S	V	Q		
1	5	9		
3	7	1		
3	9	5		
7	1	5		
6	8	1		
1	2	3		
9	5	4		
3	7	9		

R&R Example 1

S	V	0	Range	Outcome
1	5	9	1-9	1
3	7	1	1-13	3
3	9	5	5-13	5
7	1	5	0-5	5
6	8	1	1-15	6
1	2	3	1-3	1
9	5	4	4-6	6
3	7	9	5-9	5

Lessons from Romer and Rosenthal

• Causal factors:

- Interest Proximity

• closer interests, better outcome

- Reversion Point

- if bad for principal, agent gains
- Proposal & Amendment Rights
 - if proposal restricts future actions, proposer benefits
- Missing: information problems. © 2004 Arthur Lupia

Black (1948)

- M. "When a decision is reached by voting or is arrived at by a group all of whose members are not in complete accord, there is no part of economic theory which applies."
- NH. Is there more than one point that can beat all others by a simple majority?
- P. One dimension. Single-peaked preferences. A continuum of voters. A single-dimensional policy space. Majority rule. Complete & perfect information.
- C. Voters choosing the alternative closes to them and both candidates choosing the median voter's ideal point is the unique Nash equilibrium.

Variations of the Median Voter Theorem

• Two candidates.

– Prove it.

- Four candidates.
 - Prove it.

MVT Premises

- Each voter has an ideal point $V_j \in \mathcal{R}, j \in \{1, ..., N\}$
 - *N* is large, finite, and odd.
- Each voter has single peaked preferences, $U_i = -|Y V_j|$
 - Indifferent voters flip a coin.
- The voters choose a winner $Y \in \{c_1, c_2\}$.
 - The probability of c_1 winning =1 if the number of voters preferring it to c_2 is greater than N/2.
 - The probability of c_1 winning =.5 if the number of voters preferring it to c_2 is N/2.
 - Otherwise, the probability is zero.
- Each candidate makes a proposal $c_i \in \mathcal{R}$, $i \in \{1, 2\}$.
 - Each candidate wants to maximize the number of votes.

Spatial Utility in 2 dimensions

- Utility is commonly defined by the distance between an outcome and an ideal point.
- Player i's utility is maximized when the outcome is located at her ideal point, *ideal*_i.
- Recall that $a^2 + b^2 = c^2$ implies $c = \sqrt{a^2 + b^2}$
- In two dimensions, it is common to assume: $u_i(outcome, ideal_i) = -\sqrt{|outcome_x - ideal_x|^2 + |outcome_y - ideal_y|^2}$

Example Ordeshook 1992: 82-85

- Five committee members have standard preferences over a two-dimensional Euclidean policy space
 - $x_1 = (5,0)$
 - $x_2 = (10,0)$
 - $x_3 = (5, 10)$
 - $x_4 = (0, 10)$
 - $x_5 = (5,5)$
- The status quo, Q = (30, 30).
- Motions are made under an open rule and voted on sequentially in a pairwise fashion.
- Which outcome prevails?

Example' Ordeshook 1992: 82-85

- Five committee members have standard preferences over a two-dimensional Euclidean policy space
 - $x_1 = (5,0)$
 - $x_2 = (10,0)$
 - $x_3 = (5, 10)$
 - $x_4 = (0, 10)$
 - $x_5 = (5,5)$
- The status quo, Q = (30, 30).
- Motions are made under an open rule and voted on sequentially in a pairwise fashion.
- Voter 5 is not allowed to make a motion.
- Which outcome prevails?

Example'' Ordeshook 1992: 82-85

- Five committee members have standard preferences over a two-dimensional Euclidean policy space
 - $x_1 = (5,0)$
 - $x_2 = (10,0)$
 - $x_3 = (5, 10)$
 - $x_4 = (0, 10)$
 - $x_5 = (5,5)$
- The status quo, Q = (30, 30).
- Motions are voted on sequentially in a pairwise fashion.
- Voter 1 and 2 can make one motion each.
- Voter 1 first decides whether to make the first motion or to let voter 2 do so.
- Which outcome prevails?

If Voter 1 makes the first motion

- If voter 1 proposes his ideal point, voter 2 will respond by making a motion on the line connecting x₂ and x₅ that is to her own ideal point and least as close to x₅ as x₁.
- If voter 1 proposes the point that lies midway between x₂ and x₅, voter 2 cannot make a motion that leaves both her and voter 5r better off.
- Therefore, the outcome is (7.5, 7.5).

If Voter 1 passes

- There are 2 cases to consider
 - Voter 2's motion is further from x_5 than is Voter 1's ideal point.
 - Voter 1 will offer his ideal point as a motion.
 - Voter 2's motion is closer to x_5 than is Voter 1's ideal point.
 - Voter 1 will offer a motion that is slightly closer to x_5 .
 - Of these points, Voter 2 most prefers voter 1's ideal point.
- Therefore, the outcome is voter 1's ideal point.
- Thus, voter 1 prefers to pass on the opportunity to make the first motion.