Outline

- Elements of non-cooperative game theory.
- Preference, utility, actions, strategies.
- Normal Form games.
- Identifying Nash Equilibria
- Domination
- Mixed Strategies
- The Growing Family of Equilibrium Concepts

Components of a Game

- players
- actions
- strategies
- information
- outcomes
- payoffs
- Equilibrium concept

Game Theory Fundamentals

- Player goals are represented by utility functions with utility defined over outcomes.
- Actions and Strategies
- A strategy is a plan of action.
- In games that can be modeled as if they are simultaneous, actions and strategies are equivalent.
- In other games, strategies and actions are quite different with strategies being the primary choice of interest.
- The combination of actions by all players determines a payoff for each player.

A normal form game

-By convention, the payoff to the so-called row player is the first payoff given, followed by the payoff to the column player.

	Study	Loaf
Study	100,100	50,0
Loaf	0,50	$-10,-10$

Practical Description

- The normal form representation of a game specifies:
- The players in the game.
- The strategies available to each player.
- The payoff received by each player for each combination of strategies that could be chosen by the players.
- Actions are modeled as if they are chosen simultaneously.
- The players need not really choose simultaneously, it is sufficient that they act without knowing each others' choices.

Components of a Normal Form Game

- Players
- Actions
- Strategies.
- Information.
- Outcomes.
- Payoffs.
- Equilibrium concept.

A small number.
Define columns and rows.
Define columns and rows.
Complete.
Represented by vectors in cells.
Elements of the vectors.
Nash.

Technical Definition

- 1 to n: players in an n-player game.
- S_{i} : player i's strategy set.
- S_{i} : an arbitrary element of S_{i}.
- $u_{i}\left(s_{\mathrm{i}}\right)$: player i's payoff function.
- Definition: The normal-form representation of an n-player game specifies the players' strategy spaces $\mathrm{S}_{1}, \ldots, \mathrm{~S}_{\mathrm{n}}$ and their payoff functions u_{1}, \ldots, u_{n}.
- We denote the game by $\mathrm{G}=\left\{\mathrm{S}_{1}, \ldots \mathrm{~S}_{\mathrm{n}} ; \mathrm{u}_{1}, \ldots \mathrm{u}_{\mathrm{n}}\right\}$.

Nash Equilibrium

- For an equilibrium prediction to be correct, it is necessary that each player be willing to choose the strategy described in the equilibrium.
- Equilibrium represents the outcome of mutual and joint adaptation to shared circumstances.
- If the theory offers strategies that are not a Nash equilibrium, then at least one player will have an incentive to deviate from the theory's prediction, so the theory will be falsified by the actual play of the game.

Technical Definition

- In the n-player normal-form game $\mathrm{G}=\left\{\mathrm{S}_{1}, \ldots \mathrm{~S}_{\mathrm{n}} ; \mathrm{u}_{1}, \ldots \mathrm{u}_{\mathrm{n}}\right\}$, the strategies $\left(\mathrm{s}_{1}{ }^{*}, \ldots \mathrm{~s}_{\mathrm{n}}{ }^{*}\right.$) are a Nash equilibrium if, for each player i,
$-s^{*}{ }_{i}$ is (at least tied for) player i's best response
- to the strategies specified for the $\mathrm{n}-1$ other players, $\left(\mathrm{s}^{*}{ }_{1}, \ldots \mathrm{~s}^{*}{ }_{\mathrm{i}-1}\right.$,

$$
\left.s^{*}{ }_{i+1}, \ldots s_{n}^{*}\right): u_{i}\left(s^{*}{ }_{1}, \ldots s^{*}{ }_{i-1}, s^{*}{ }_{i}, s^{*}{ }_{i+1}, \ldots s^{*}{ }_{n}\right) \geq u_{i}\left(s^{*}{ }_{1}, \ldots s^{*}{ }_{i-1}, s_{i}, s^{*}{ }_{i+1}, \ldots s^{*}{ }_{n}\right)
$$

- for every feasible strategy s_{i} in S_{i};
- that is, s_{i}^{*} solves max $s_{i} \in S_{i} u_{i}\left(s^{*}{ }_{1}, \ldots s_{i-1}, s_{i}, s^{*}{ }_{i+1}, \ldots s^{*}{ }_{n}\right)$.
- If the situation is modeled accurately, NE represent social outcomes that are self-enforcing.
- Any outcome that is not a NE can be accomplished only by application of an external mechanism.

Ways to identify NE - in order of ease.

- Rule: As the level of conflict increases, so does the work required to derive a solution.
- Identify pairs of dominant strategies.
- Eliminate dominated strategies.
- Identify stable pairs of pure strategies.
- Identify stable pairs of mixed (probabilistic) strategies.

Strictly dominated

- In the normal-form game $G=\left\{S_{l}, \ldots S_{n} ; u_{p}, \ldots u_{n}\right\}$, let s_{i}^{\prime} and $s_{i}^{\prime \prime}$ be feasible strategies for player i (i.e., s_{i}^{\prime} and $s_{i}^{\prime \prime}$ are members of S_{i}).
- Strategy s_{i}^{\prime} is strictly dominated by strategy $s_{i}{ }_{i}$ if
- for each feasible combination of the other players' strategies,
- i's payoff from playing s_{i}^{\prime} is strictly less than i's payoff from playing $s_{i}^{\prime \prime}: u_{i}\left(s_{1}, \ldots s_{i-1}, s_{i}^{\prime}, s_{i+1}, \ldots s_{n}\right)<u_{i}\left(s_{1}, \ldots s_{i-1,}, s_{i}^{\prime \prime}, s_{i+1}, \ldots s_{n}\right)$ for each $\left(s_{p}, \ldots s_{i-1}, s_{i+1}, \ldots s_{n}\right)$ that can be constructed from the other players; strategy spaces $S_{l}, \ldots S_{i-1}, S_{i+1}, \ldots S_{n}$.

Elimination of dominated strategies

	Left	Middle	Right
Up	1,0	1,2	0,1
Down	0,3	0,1	2,0

Figure 1.1.1. Iterated domination produces a solution.

	Left	Middle	Right
Top	0,4	4,0	5,3
Middle	4,0	0,4	5,3
Bottom	3,5	3,5	6,6

© 2003 Arthur Lupia
Figure 1.1.4. Iterated elimination produces no solution.

Requirements for Iterated Domination

o If we want to be able to apply the process for an arbitrary number of steps, we need to assume that it is common knowledge that the players are rational.
o We need to assume not only that all the players are rational, but also that all the players know that all the players are rational, and that all the players know that all the players know that all the players are rational, and so on, ad infinitum.
o In the many cases where there is no or few strictly dominated strategies, the process produces very imprecise predictions.
© 2003 Arthur Lupia

Example 1: A game with a dominated strategy.

	Left	Right
Top	8,10	$-100,9$
Bottom	7,6	6,5

Example 2: A more complicated game: with dominated strategies.

	Left	Middle	Right
Top	4,3	5,1	6,2
Middle	2,1	8,4	3,6
Bottom	3,0	9,6	2,8

© 2003 Arthur Lupia

NE: Fun facts

- If iterated elimination of dominated strategies eliminates all but one strategy for each player, then these strategies are the unique NE.
- There can be strategies that survive iterated elimination of strictly dominated strategies but are not part of any Nash equilibrium.
- If most models are to produce a unique solution, the solution must be a Nash equilibrium.
- A game can have multiple Nash equilibria. The precision of its predictive power at such moments lessens.

	Left	Middle	Right
Top	0,4	4,0	5,3
Middle	4,0	0,4	5,3
Bottom	3,5	3,5	6,6

Figure 1.1.5. Iterated elimination produced no solution. Find the Nash Equilibrium.

	Opera	Fight
Opera	2,1	0,0
Fight	0,0	1,2

Battle of the Sexes
(C) 2003 Arthur Lupia

Solving for MS-NE

- Row chooses "top" with probability p and bottom with probability 1-p.
- Column chooses "left" with probability q and "right" with probability $1-\mathrm{q}$.

	Left	Right
Top	$4,-4$	$1,-1$
Bottom	$2,-2$	$3,-3$

- Players choose strategies to make the other indifferent.
$-4 q+1(1-q)=2 q+3(1-q)$
$-\quad-4 p-2(1-p)=-1 p-3(1-p)$
- The MS-NE is: $\mathrm{p}=.25, \mathrm{q}=.5$.
- The expected value of either Row strategy is 2.5 and of either Column strategy is -2.5

Mixed strategy NE

- A mixed strategy Nash Equilibrium does not rely on an player flipping coins, rolling, dice or otherwise choosing a strategy at random.
- Rather, we interpret player j 's mixed strategy as a statement of player i's uncertainty about player j's choice of a pure strategy.
- In games of pure conflict, where there is no pure strategy Nash equilibria, the mixed strategy equilibriums are chosen in a way to make the other player indifferent between all of their mixed strategies.
- To do otherwise is to give others the ability to benefit at your expense. Information provided to another player that makes them better off makes you worse off.

Mixed Strategies

- In the normal-form game $G=\left\{S_{l}, \ldots S_{n} ; u_{l}, \ldots u_{n}\right\}$, suppose S_{i} $=\left\{s_{i 1}, \ldots s_{i K}\right\}$. Then a mixed strategy for player i is a probability distribution $p_{i}=\left(p_{i 1}, \ldots p_{i k}\right)$, where $0 \leq p_{i k} \leq 1$ for $k=1, \ldots, K$ and $p_{i 1}+\ldots+p_{i K}=1$.

	Left	Right
Top	$3,-$	$0,-$
Middle	$0,-$	$3,-$
Bottom	$1,-$	$1,-$

Figure 1.3.1. Bottom is strictly dominated by a mixed strategy.

	Left	Right
Top	$3,-$	$0,-$
Middle	$0,-$	$3,-$
Bottom	$2,-$	$2,-$

Figure 1.3.2. Bottom is a best response to mixed strategies by the column player in which $1 / 3<\mathrm{q}<2 / 3$.

Technical Definition

- Let $v_{i}\left(p_{i} p_{-i}\right)$ be the expected payoff of mixed strategy p_{i} to player i given that the other player chooses mixed strategy p_{-i}.
- Then, in the two player normal-form game $G=\left\{S_{1}, \ldots S_{n}\right.$; $\left.u_{l}, \ldots u_{n}\right\}$, the mixed strategies $\left(p_{1}{ }^{*}, \ldots p_{n}{ }^{*}\right)$ are a Nash equilibrium if each player's mixed strategy is
- a best response to the other player's mixed strategy:
- $v_{l}\left(p^{*}, p^{*}{ }_{2}\right) \geq v_{l}\left(p_{1}, p^{*}\right)$ for every probability distribution p_{1} over S_{1} and
$-v_{2}\left(p_{1}{ }_{1}, p^{*}{ }_{2}\right) \geq v_{2}\left(p_{1}^{*}, p_{2}\right)$ for every probability distribution p_{2} over S_{2}.

	Halves	More for Me
Halves	150,150	0,0
More for you	125,175	100,200

	Left	Right
Top	$4,-4$	$1,-1$
Bottom	$2,-2$	$3,-3$

	Left	Right
Top	4,1	1,2
Bottom		
C 2003 Arthur Lupia	2,3	3,6

The last word.

- Theorem (Nash 1950): In the n-player normal-form game $G=\left\{S_{l}, \ldots S_{n} ; u_{l}, \ldots u_{n}\right\}$, if n is finite and S_{i} is finite for every i then there exists at least one Nash Equilibrium, possibly involving mixed strategies.

Equilibrium Concepts

Move sequence:	static	dynamic		
Information:	complete	incomplete	complete	incomplete
Appropriate Nash Equilibrium concept	Generic	Bayesian	Subgame perfect	Perfect Bayesian, sequential

-What is the set of self enforcing best responses?
-The equilibrium concepts build upon those of simpler games.

- Each subsequent concept, while more complex, also allows more precise conclusions from increasingly complex situations

