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Goals

* Qur premise is that equilibrium in games arises as
the result of learning, and that just what people will
learn depends both on the true distribution of
Nature's move and on what they observe when the
game is played.

 In order for repeated observations to lead players to
learn the distribution of opponents’ strategies, the
signals observed at the end of each round of play
must be sufficiently informative. Such information will
tend to lead players to also have correct and hence
identical beliefs about the distribution of Nature’s
moves.



We consider a static simultancous-move game with I player roles.” (Al
parameters of the game, includig the number of plavers, and their possible actions and
tvpes. are assumed to be finrte.) In the static game. Nature moves first, determining
plavers™ types, which we denote 6. .. To model cases where the types alone do not
determine the realized payolls, we also allow Nature to pick 0,€0,: we call this
“Nature’s type.” Players observe therr types. and then simultaneously choose actions
g€ 4 as a function of their type, so that a strategy o for player ¢ 15 a map from her
types to mixed actions. Player i's utility u(a0) depends on the profile
(1= (0penty) € A of realized actions, and on the realization 6 =(0,.0,....0,) €O of

Nature's move, When u(.0) = u.(a.f ) we refer to the game as having private values.



Our solution concept 1s motivated by thinking about a learning environment in
which the game given above 1s played repeatedly. We suppose that players know their
own payoll functions and the sets of possible moves by Nature (© ) and players (4): but
they know neither the strategies used by other players nor the distribution of Nature's
move: the players learn about these latter variables from their observations after each
period of play. We also suppose that each period the types are drawn independently over
time from a fixed distribution p. Thus p corresponds to the true distribution of Nature's
move in the stage game, and when o' = p for all plavers i we say that the priors are
correct.” For the time being, we also assume that there is a single agent in each player
role. Section 4 discusses the case where there 18 a large population of agents in each role
who are matched together to play the game: we also discuss there the possibility that

tvpes are generated by a more general stochastic process.



Signal content

Of course, what plavers might learn from repeated play depends on what they
observe at the end of each round of plav. To model this, we suppose that after each play
of the game. players receive private signals y.(a.f) which is their only information
about Nature's and their opponents” moves. [t 1s natural to assume that players observe
their own actions and tvpes, but whether or not they observe others™ actions. or their own

and others” payolls. depends on the observation structure and will affect which outcomes

can arise in a steadv state. We assume that each player observes her own private signal

I'

-

g along with her own action and own type.



Strategy and Conjecture

The key components of self-confirming (and Nash) equilibrium are each player

ateeies used

L

conjecture abe

I's heliefs about Nature’s move. her strategy

d by ', are a point in the space A(O) of

by her opponents. Player i's

distributions over Nature’s move, and her strategy 15 a map ¢ .:0, = A(4,). The space of

all such strategies 1s denoted X, . and the plaver's conjectures about opponents” play are

assumed to be a 6, ex_ L . that is. a strategy profile of i's opponents. The notation

'I;"

(- 160) refers to the conditional distribution corresponding to u' and 0., while

o,(a | ) denotes the probability that ,(0,) assigns to a..



Definition: A strategy profile o is a self-confirming equilibrium with conjecture o
and beliefs (1, if for each plaver 1,
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Explanation

« Condition (i) is a consequence of the assumption that
players observe their own types.

« Condition (ii) says that any action played by a type of
player i that has positive probability is a best
response to her conjecture about opponents’ play
and beliefs about Nature’s move.

« Condition (iii) says that the distribution of signals
(conditional on type) that the player expects to see
equals the actual distribution. This captures the least
amount of information that we would expect to arise
as the steady state of a learning process.
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As mentioned above, 1 plavers cannot observe o deduce their opponents

actions at the end of each period, then i general there can be selt-confirmmg equilibria
hat are ot Nash equilbria, S0 we begin by considering the case i which plavers eithe
direely observe, or indirectly deduce {rom other observations, the realized actions of

e opponents afer each play of the game
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Generic=very mnformative

Proposition 2: [f either
(1) pavoffs are generic (wla.0) = wla'.0') if either o =a" or 0= 8') and

observed, or
(ii) there are private values and observed actions,

then the set of strategy profiles in self-confirming equilibria coincides with the set of

Nash equilibrium profiles of the game with the correct (hence common) prior.



Private values

OppOnnts” actions atven their own type. Suppose In addtion that the pame 15 a game of

privte values, that s, u(af) = o). Snceap

layer's pavotls do not depend on her

opponents” tvpes, In a game wih private values, any strategy for plaver J that 1 a bes

response 1o conjectures and beliels consistent with the observed distrbution over actions

st o be a best response o the true distibutions of opponents'actions and Nature's



Proposition 4 : (i) Without private values (v;(0.0) # w(a.6.) for some (0.6)), if neither
hypes nor pavoffs are observed, but actions are (y{a,0) = a), there can be self
confirming equilibria with correct beliefs about Nature (1" = p) that are not Nash even

with correct priors (Example 3).

(i) Even if the set of strategy profiles in self-confirming equilibria with beliefs 1 = |
coincides with the set of Nash equilibria, conjectures about opponents” play may fail to
be correct (0, #0,). Consequently the profile can fail to be self confirming once

actions are added to the available information (Example 4).



Fxample 4: A game where when pavoffs are observed, Nash equilibrium and self-
confirming equilibrium are equivalent iff actions are not observed.

Consider a two-player game in which Nature chooses the left or right matrix. Neither
plaver has private information. Proposition 2 (i) does not apply because the pavotls

include ties as shown below.
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To analvze Nash equilibria. suppose that the stage game prior is that both players think
the left matrix is chosen with probability 1—& . The strategic form for this game given

the common beliels & is

A l-£.1-¢ £. €

B £, F 0.0

The unique Nash equilibrium for the specitfied beliefs is (A, A).

Now suppose that in the learning environment, the true probability of the left matrix
is £. If players observe only their pavolls. then (. A) is a self=confirming equilibrium
with beliefs (1—&.£) and conjecture that the opponent is playving B: in this case each
plaver believes that plaving A vields 1 with probability £ . and B vields 0. However. il
plavers were to also observe actions. then the Nash equilibrium (4. ) would no longer be

self confirming.



Example 5: A game where Nash equilibrivm and self-confirming equilibrium coincide for

a specific diverse belief about Nature s move

/ R L R
L I. 1 0.0 ) -1. -1 (0.0
D 00 -1. -1 1 0, 0 1.1

This is a two-player game in which Nature chooses the left (/) or right (#) payvotls. and
neither plaver observes Nature’s move. The row player believes the left payoltls are
chosen. the column playver believes the opposite: &' (/)= #*(#)=1. So the unique Nash
equilibrium is for the row plaver to play { and the column playver R. with payvotts (0. O).
Whether or not players observe their opponent’s actions or their own utility. this profile is

oge-game priors. However. the subset of

—
[

sell=confirming with beliels equal to the given sta
self-confirming equilibria with beliefs in which &' =% is either (U, L). (D. R). or the

entire strategy space.



A Behavioral Model of Turnout
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We construct a model of adaptive rationality:
citizens learn by simple trial-and-error,
repeating satisfactory actions and avoiding
unsatisfactory ones.

Their aspiration levels, which code current

payoffs as satisfactory or unsatisfactory, are
also endogenous, themselves adjusting to
experience.

Our main result is that agents who adapt in
this manner turn out in substantial numbers
even in large electorates and even if voting is
costly for evervyone.



Choices

Fach avent has two chotees, b vote or stav home | “H']Jil']a:“].? We asstnne that the electorate 1
of fmte stze N and 15 drvnded moto two blocs or factions, of np Democrats and np Republicans
it ng > Oand ng > 0, and np +np = N Candidates and thenr belavior are suppressed 1 the
model.| Voters are denoted by 1. Plavers mteract at diserete time pertods f according fo the same

|:c|] <]l | game



Adaptations

LT 1 every persod £, every actor ¢ 15 endowed with a propensity (probabihty ) to vote; call ths

itV E ) H. That citizen's propensity 1o shirk 1 thus pi 151 = 1= i1V, For cotvenence, we
offen abbreviate the vote propensity to pyy. Fach ettizen 1 also endowed with an aspiration level,
denoted g, Depending on pig. an action 18 realzed for each 2. This determimes whether 1's faction

won ot lost and whether 2 voted, Realized pavolls are then compared to aspiration levels, whieh

may lead to the adjustment of propensities or asprrations for the next pertod



Means of inference

[n most games of interest (including the turnont game) 1t 1s difficult or impossible to derive
quantitative properties of the lnting distribution analyvticallv. We therefore nse simulation tech-
nigues, which enable ns to examine the limiting distribution’s important quantitative features, such
as the average level of turnout. To use simulation we specily a particular computational model as
a speclal case of the general model defined above. (The simulation program 1= described 1 the
Appendizx.

Regarding pavolls, we simplify the general model i two wavs, First, unless otherwise stated
we assume homogeneons costs and benefits of voting: ¢; — ¢ = U and & = b = o for all . {Unless
stated otherwise we normalize b to 1 in the simulation.) We also consider special eases in which
members of one faction experience different costs or benefits than members of the other. In these,
however, evervone 1n the same faction gets the same costs or henefits. Second, we assume that
the random component, &g, 15 distributed nniformly over |—%‘§| The parameter w therelore

represents the size of the support of the shock.



How 1t works - 1

aspirations are a; g — 0.5, and the size of the pavoll support 1= 0.2, Suppose Democrats win
period 10 50 Vs vote and only 49 R's. The kev question 15, what happens to people’s dispositions
to vote alter this election? Becanse evervone starts with infermediaie aspirations. all the winning
Democrats lnd winning and voting to be satisfactory, { Even with a bad random shock to pavolls,
the worst pavoll a winning voter can get 1s 0.65.) Hence these 50 Democrats are mohbilized: their
vote-propensities rise after the election. However, the slothful behavior of their comrades. who
enjoved a frec-riding payvoll of between 0.9 and 1.1, 15 also reinforced. So this 1= not the place to
loclk for the explanation of a major breakout of participation. The place to look 1= the effect that
the Democratic victory had on their shirking opponents. The hest payoll that a shirking Republican
could get i period one was 0.1 {zero plus a maximally good shock). Because this is less than their
mmitial aspiration level, all shirking losers are dissatisfied with staying home. Hence in the next
period all such Republicans—the overwhelming majority of their team (4,951 —will increase their

probability of voting. We call this loser-driven mobilization.



How 1t works —2

The story 15 not over. In pertod 2 the Republicans, having been mobilized by their loss in the
previous election, will almost eertamly win. The effect on their propensity to vote 1s complicated.
All Republicans who actually voted will he reintorced for doing =0, but all of their free-riding
cotmrades will have that action snpported as well. Thus, onee again, foense on the winners does
not explain why the svstem eventually winds up a much higher turnout level; onee agam. we must
look at the losers—in this period, the Democrats. In period 2 almost all Demoerats stav home and
oot a payoll of zero, on average. With aspirations adjusting slowlv, and henee still elose to one-half,
the players will code pavolls that are about zero as fatlures. 5o now the Demoerats” shirking 1s
mhibited. Hence more of them turn out i period 3. and loser-driven mohilization continues. The

mobilization of one side begets counter-mobilization, in a tvpically pluralist fashion.1®



Further implications

Observation 1: [f m  the aspirations of people m the winning faction are not too high and
the aspirations of people on the losing side are not too low, then all winners are satisfied by the

onteomme mfwhile all losers are dissatisied.

Proposition 2:  Suppose that the following conditions hold: (1) mn f the aspirations of people n
the winning faction are not too high and the aspirations of people on the losing side are not too
low: (1) the election 1= conclusive and the winmng party is not larger than the losing party by more
than one voter: and (111 evervone in { has a vote propenszity of less than one. Then the expected
mumber of citizens who hecome more disposed to vote excecds the expected mumber who become

less melined.



Agenda Setting Powers 1n
Organizations with Overlapping

Generations of Players
Abinay Muthoo and Kenneth Shepsle



Shepsle/Muthoo premises

* Only the oldest generation of players face re-election
at the end of each period.

* Success in re-elections depends on a retrospective
assessment by voters with the WHYDFML Principle
lying at the heart of this matter.

Assumption 2 (The WHYDEML Principle). For any arbitrary pair
! l: :ry':i‘r;l :l. (i1 I'.'JI Il.lllh',l" (! ﬁ',I"III-'."|'I,l"l'."."a'.'ilflll' Sill I'.".'I.-'I. l > I::l. Hl 'Iy'. Ig | _\l >
1z, +4,1,).



3.1, Framework, We consider a strategic environment which oper-
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With probability f, where 8 € |0, 1), the voung plaver makes a “take-
it-or-leave-it™ offer to the old plaver, and with probability 1 £t is the
old plaver who makes a “take-it-or-leave-it™ offer to the young player.,

Proposition 1. Define the following ineguality:

(1) %1[(1,13 | %“'TH_.H:' > {0, 1).

(i) If 11 satisfies inequality 1, then there erists a 8% € (0,1) such that
W(.) is marimized at 8@ = 0%, where
[Til, Ly [0, 00 — 2110, 1)

v 2[T1(1, 1) + 11{0,0) — [1(0, 1) — II(1,0)

(ii) If I1 does not satisfy inequality 1, then W (.) is maximized at @ (1.

[t is casv to verifv that €% is strictlv less than 0.5; and that is the
case becanse of Assumption 2 (the WHYDFML Principle). This re-
sult indicates that even when it is optimal to allocate some bargaining

.



