Outline

- Problem Sets
- Nash Equilibrium in Extensive Form Games.
- Backwards Induction
- Subgame Perfection

Problem Set

• Generally good

- Waiting for Cournot
 - I did not grade this problem.
 - Basics of how to do it.

Extensive Form Games

- Player moves can be treated as sequential or simultaneous.
- First Models:
 - Complete information games in which all aspects of the structure of the game –including player payoff functions -- is common knowledge.
 - Perfect information at each move in the game the player with the move knows the full history of the play of the game thus far.

 $\ensuremath{\mathbb{C}}$ 2003, 2004 Arthur Lupia The structure of a simple game of complete and perfect information.

- 1. Player 1 chooses an action a_1 from the feasible set A_1 .
- 2. Player 2 observes a_1 and then chooses a_2 from the feasible set A_2 .
- 3. Payoffs are $u_1(a_1, a_2)$ and $u_2(a_1, a_2)$.
 - 1. Moves occur in sequence, all previous moves are observed, player payoffs from each move combination are common knowledge.
 - 2. We solve such games by backwards induction.

The central issue is credibility.

Example 1 Here

3 legislators Choices: Yes, No Outcomes: Pass, Not.

Backwards Induction

- When player 2 gets the move at the second stage of the game, he or she faces the following problem, given the previously chosen action a_1 , $max_{a2 \in A2} u_2(a_1, a_2)$.
- Assume, for the moment, that for each $a_1 \in A_1$, player 2's optimization problem has a unique solution denoted by $R_2(a_1)$.
- Since player 1 can solve player 2's problem as well as 2 can, player 1 should anticipate player 2's reaction to each action a_1 that 1 might take.
- So 1's problem at the first stage amounts to $max_{al \in Al} u_l(a_l, R_2(a_l))$.
- $(a_{l}^{*}, R_{2}(a_{l}^{*}))$ is the backward induction outcome of this game.
- Implies sophisticated rather than sincere behavior.
- Implies that the sequence of action can affect equilibrium strategies.

- Morrow, p. 124.
- Even though backwards induction predicts that the game will end at a particular stage, an important part of the argument concerns what would happen if the game did not end in the first stage.

Requirements for BI

- o Thinking through strategic behavior requires us to assume that decision makes are interested in, and capable of, counterfactual reasoning.
 - o In some cases, the amount of counterfactual reasoning required is quite substantial.
- o If people reason "as if" they undertake such calculations, then the theory's validity is not imperiled.
- When can we assume that people are, or act as if they are, capable of thinking through counterfactuals?

- Gibbons, p. 60.
- Even though backwards induction predicts that the game will end at a particular stage, an important part of the argument concerns what would happen if the game did not end in the first stage.

Subgame Perfect NE

A NE is subgame perfect if players' strategies constitute a Nash Equilibrium in every subgame.

- Player 1 chooses action a_1 from feasible set A_1 .
- Player 2 observes a_1 and then chooses action a_2 from feasible set A_2 .
- Player 3 observes a_1 and a_2 and then chooses action a_3 from feasible set A_3 .
- Payoffs are $u_i(a_1, a_2, a_3)$ for i=1,...,3.
- $(a_1, a_2^*(a_1), a_3^*(a_1, a_2))$ is the subgame-perfect outcome of this two-stage game.

Backwards Induction & Subgame Perfection

- The BI outcome involves only credible threats: player 1 anticipates that player 2 will respond optimally to any action a_1 that 1 might choose, by playing $R_2(a_1)$; player 1 gives no credence to threats by player 2 to respond in ways that will not be in 2's self-interest when the second stage arrives.
- A NE is subgame perfect if it does not involve a noncredible threat.
- A dynamic game may have many NE, but the only subgame-perfect NE is the one associated with the backwards-induction outcome.

Repeated Games

Consider a two-stage Prisoners' Dilemma.

	Defect	Cooperate
Defect	1, 1	5, 0
Cooperate	0, 5	4, 4

In the second stage, the equilibrium will be defect, defect. Therefore, the first period of the two stage game is equivalent to the following one-stage game.

	Defect	Cooperate
Defect	2, 2	6, 1
Cooperate	1, 6	5, 5

A general result.

- Definition: Given a stage game G, let *G*(*T*) denote the *finitely repeated* game in which G is played T times, with the outcomes of all preceding plays observed before the next play begins. The payoff for *G*(*T*) are simply the sum of the payoffs from the T stage games.
- If the stage game G has a unique NE then, for any finite T, the repeated game G(T) has a unique subgame perfect outcome: the NE of G is played in every stage.

Cooperation from Repetition?

Proposition: If G={A₁,...A_n;u₁,...u_n} is a static game of complete information with multiple NE then there may be subgame perfect outcomes of the repeated game G(T) in which, for any t<T, the outcome in stage T is not a Nash equilibrium of G.

	Defect	Cooperate	Right
Defect	1, 1	5, 0	0, 0
Cooperate	0, 5	4, 4	0, 0
Bottom	0, 0	0, 0	3, 3
© 2003, 2004 Arthur Lupia			

The prisoners' dilemma with one action added for each player.

	Defect	Cooperate	Right
Defect	1, 1	5,0	0, 0
Cooperate	0, 5	4, 4	0, 0
Bottom	0, 0	0, 0	3, 3

- o Suppose that the players anticipate that (Bottom, Right) will be the second stage outcome if the first stage outcome is (Cooperate, Cooperate), but that (Defect, Left) will be the second-stage outcome if any of the eight other first stage outcomes occurs.
- o The players, first stage interaction then amounts to the following one-shot game:

	Defect	Cooperate	Right
Defect	2, 2	6, 1	1, 1
Cooperate	1, 6	7, 7	1, 1
Bottom	1, 1	1, 1	4, 4

• Morrow, p. 131. Figure 5.16.

- S-PNE on a Voting Tree. (Agenda: abcde)
 TYPE 1 D A B C E
 TYPE 2 A B C E D
 TYPE 3 C B E D A
 - TYPE E e D A C B

The Folk Theorem

- Let *G* be a finite, static game of complete information. Let $(e_1, ..., e_n)$ denote the payoffs from a NE of G, and let $(x_1, ..., x_n)$ denote any other feasible payoffs from G. If $x_i > e_i$ for every player i and if δ is sufficiently close to one, then there exists a subgame-perfect NE of the infinitely repeated game G(∞, δ) that achieves $(x_1, ..., x_n)$ as the average payoff.
 - Insights from one-shot games do not automatically transfer to repeated interactions.
 - Repeated games require special assumptions about time.
 - Credible threats or promises about future behavior can influence current behavior.

Rubenstein (1982)

Premises

- The following sequence repeats until an offer is accepted.
 - Player 1 proposes a split.
 - Player 2 accepts immediately or, after delay, makes a counteroffer.
 - Player 1 accepts immediately or, after delay, makes a counteroffer....
- Players prefer money now. Discount rate: δ - present value of a next period \$.

Results

- The unique subgame perfect equilibrium is for Player 1 to take $100/(1+\delta)$ and leave $100\delta/(1+\delta)$ for Player 2, and for Player 2 to accept this offer and spurn any offer that is worse.
- If $\delta = 1$, player 1 takes & leaves 50.
- If δ =.5, player 1 takes 67, leaves 33.
- If $\delta = 0$, player 1 takes 100.
- Higher discount rates are sufficient to imply lower walk-away values in the current period.

Rubenstein Implications

- The amount of the offer reflects the net present value to player 2 of playing the game.
- The less 2 likes waiting for payoffs the higher their discount rates the more that player 2 will sacrifice for a payoff now.
 - At $\delta=1$, s=1/2. No one fears the future. No one has an advantage.
 - At $\delta = .5$, s = 2/3.
 - At $\delta=0$, s=1. Also true if a one-shot game where if player 2 rejects player 1's offer, all payoffs are zero.
- In the comparative statics result, no variable other than discount rates shift, yet the results change dramatically.