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ABSTRACT
Product forms in quantitative design methods are typically

expressed with a mathematical representation such as vectors,
trees, graphs, and grammars. Such formal representations are
restrictive in terms of realism or flexibility, and this limits their
utility for human designers who typically create product forms
in a design space that is restricted by the medium (e.g., free-hand
sketching) and by their cognitive skills (e.g., creativity and expe-
rience). To increase the value of formal representations to human
designers, this paper proposes to represent the design space as
designs sampled from a statistical distribution of form and esti-
mate a generative model of this distribution using a large set of
images and design attributes of previous designs. This statistical
representation approach is both flexible and realistic, and is esti-
mated using a deep (multi-layer) generative model. The value of
the representation is demonstrated in a study of two-dimensional
automobile body forms. Using 180,000 form data of automobile
designs over the past decade, we can morph a vehicle form into
different body types and brands, thus offering human designers
potential insights on realistic new design possibilities.

∗Address all correspondence to this author.

1 INTRODUCTION

When developing product form for a new design concept,
human designers use a mental representation of possible concept
designs that implicitly defines the “true" conceptual design space
[1–4] and is restricted only by the designer’s cognitive skills.
This true design space is searched using human creativity and
experience [5–7], with a search process that is both flexible, i.e.,
moving from one design to another happens naturally and fluidly,
and realistic, i.e., product form representations mirror their even-
tual embodiment or, if the representation is an abstraction such
as a sketch, convey sufficient information to capture the eventual
design embodiment [8].

Quantitative design methods use explicit mathematical rep-
resentations of the design space, constituted of formalized ele-
ments such as vectors [9–11], trees [12], graphs [13–15], control
points or handles for 2D pixels [16,17] or 3D voxels [18–22], and
2D [23–27] and 3D shape grammars [28]. Each unique combina-
tion of elements and their values represents a design. These ex-
plicit formal representations tend to be either flexible but of lim-
ited realism, due to being low dimensional (e.g., a silhouette), or
realistic but of limited flexibility, due to being high dimensional
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but only flexible in the local design space (e.g., 3D polygon mesh
morphed by a few control points). A high-level positioning chart
of different representations in terms of flexibility and realism is
shown in Figure 1.

This paper describes a new approach by using a represen-
tation that is both more realistic and flexible than previous ef-
forts. The design space is represented as designs x sampled from
a statistical distribution p(x), and a generative model of this dis-
tribution is estimated using a large set of images and associated
design attributes of previous designs. The key design contribu-
tion in this work is the approach of changing the product form
design representation to a statistical distribution, and estimating
the product form design space using large-scale data of previous
designs. A methodological contribution is the use of a crowd
to act as an optimization algorithm for deep generative models;
namely, we crowdsource opinions on whether generated designs
look realistic from varying generative models. This step is im-
portant because validation of generative models is not objective,
and significant differences may exist between numerical valida-
tion metrics such as “reconstruction error” versus visual quality
[29].

To demonstrate these ideas, we conduct an experiment
within the product form area of automobile styling. The design
space distribution p(x) is approximated using a deep generative
model, in this case a variational autoencoder [30], over a data
set of 2D images and design attributes of 179,702 automobile
designs from the last decade. Preliminary results show that we
are able to estimate a mathematical representation of the design
space that is both realistic and flexible. We then explore this es-
timated design space by morphing vehicles via manupulation of
design attributes such as body type, brand, and viewpoint.

This rest of this paper is structured as follows: Section 2
discusses related work. Section 3 introduces and interprets the
approach of using a statistical distribution as a mathematical rep-
resentation for product form, and the deep generative model used
to approximate it. Section 4 details the numerical and crowd-
sourced experiment used to estimate the design space for auto-
mobile styling. Section 5 explores the design space and crowd-
sourcing results, and discusses the implications of this design
representation, limitations, and opportunities for future work.
We conclude in Section 6.

2 RELATED WORK
We discuss product form design representations in behav-

ioral science research conducted on novice and expert designers
during the conceptual design process, and in the mathematical
formalization of design representations by design researchers.
Next, we discuss generative models used in design and machine
learning research, including the difficulty in establishing objec-
tive validation metrics for such models.

FIGURE 1. POSITIONING CHART OF PRODUCT FORM DESIGN
REPRESENTATIONS ACCORDING TO LEVELS OF REALISM AND
FLEXIBILITY OF REPRESENTATION. SEE APPENDIX A FOR VISUAL
EXAMPLES OF EACH THESE REPRESENTATIONS.

2.1 Human Designer Mental Representation
The human designer’s mental representation has been stud-

ied by design researchers extensively, with much focus on behav-
ioral differences between novice and expert designers [6,31], and
their mental representation of design knowledge [32]. Experts
have been found to be better at representation realism, where re-
alism is defined as the degree of design detail [33], and ability
to connect design knowledge through sketches [8] and design
analogies [34, 35].

Expert designers have also been found to be significantly
different with regards to flexibility during the conceptual design
search process. Expert designers make smaller “leaps" between
design analogies when traversing their mental design represen-
tation [36], and are more likely to work backwards from the de-
sign solution [37], using a design problem decomposition strat-
egy that enables “efficient" traversal of the design space.

2.2 Mathematical Design Representations
Mathematical representations of the product design space

are more straightforward to compare as they are defined explic-
itly, thus constructing the design space according to all possible
states of the representation. As noted in Section 1, these math-
ematical representations use a variety of formal elements that
can be placed into six major categories as shown in Figure 2.
While these mathematical representations have found numerous
successes, including use by real designers [10, 24, 40, 41], each
is limited by the tradeoff between flexibility and realism as illus-
trated in the positioning chart of Figure 1.

Fully parametric 2D or 3D vector representations have a
high degree of flexibility since they are generally capable of mor-
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FIGURE 2. EXAMPLE DESIGNS FROM VARIOUS MATHEMATICAL PRODUCT FORM REPRESENTATIONS: (A) 2D FULLY PARAMETRIC [10], (B)
2D SHAPE GRAMMAR [24], (C) 3D SHAPE GRAMMAR [38], (D) 3D FULLY PARAMETRIC [21], (E) 3D PARTIALLY PARAMETRIC WITH ESTIMATED
HANDLES [18], (F) 3D PARTIALLY PARAMETRIC WITH HAND-ENGINEERED HANDLES [39].

phing between all designs in the design space. This characteristic
is important for the validity of results drawn from experiments
using these representations. For example, assessing customer
preferences using these representations enables full coverage of
the space. The drawback of these representations, as shown in
Figures 2(a) and 2(d), is that the resulting representations are of-
ten of limited realism due to their relatively low dimensionality.

Partially parametric 2D and 3D vector representations are
manipulated with a lower dimensional set of “handles" or “con-
trol points" that affect the design representation’s pixels or vox-
els using an attachment function. This function can be defined
through a functional form, such as a kernel [18, 42], or statisti-
cally estimated model [43]. The attachment functions often work
on the entire design representation via manipulating all pixels or
vertices, or by deforming the area or volume itself as shown in
Figure 2(e). Another category shown in Figure 2(f) works on
more fine details (e.g., headlight form and LEDs), but requires
the use of design experts to hand-engineer various parametric
handles.

Opposite of the fully parametric vector representations,
partially parametric representations typically are very high-
dimensional (i.e., 10,000’s of pixels or 100,000’s of voxels), and
are subsequently very realistic. This comes at the cost of lim-
ited flexibility–the extent of possible manipulations is restricted
to local perturbations. For larger changes, constraints must be
placed between existing designs, typically through correspon-
dence points with very strong and perhaps unrealistic assump-
tions on the interpolation function (e.g., linear or quadratic) [40].

Shape grammars, both 2D and 3D as shown in Figure 2(b)
and Figure 2(c), occupy a middle ground in terms of flexibil-
ity and realism. These representations are powerful in that the
design space they define is much larger than fully or partially
parametric vector representation due to being combinatorial in in
their composition of designs. Accordingly, while they offer flex-
ibility across various designs constructed from constituent gram-
mars, such flexibility between designs is limited. This comes
with the advantage of being able to extrapolate much more rea-
sonably as compared with vector representations. We discuss
possible directions in combining random vector representations
in the current work and grammar representations in Section 5.1.

2.3 Design Generative Models
Methods to generate design concepts have received attention

by the design research community [9–11, 21, 26] and practicing
designers [40]. These methods employ the mathematical repre-
sentations noted in Section 2.2 and a variety of design generation
schemes.

Human-guided design selection use queries with multiple
generated designs in response or as an iterative communication
between human and machine. A single query for a set of gen-
erated responses is often the focus of knowledge representation
tools geared towards product form representations [32] follow-
ing early ideas from Simon [44]. Iterative communication tools
include interactive genetic algorithms [26, 45–47] and more re-
cently proposed online crowdsourcing methods [21]. We note
that while these previous approaches have used neural networks
similar to this work, these previous uses have modeled preference
elicitation rather than design representation and design genera-
tion.

2.4 Deep Generative Models
Deep generative models refer to a class of hierarchical sta-

tistical models (referred to as “deep learning" in the computer
science community; see [48, 49] for survey) characterized by
being composed of multiple layers of nonlinear functions, with
each layer connected to its adjacent layers via a set of connect-
ing “weights." These deep generative models work by modeling
the data distribution, using assumptions on the data space, rather
than the locally connective assumptions used in graph methods.
Such models have recently received renewed attention due to
their successes on benchmark tasks such as 2D image object
recognition [50]. Here we discuss three related models that form
the state-of-the-art with regards to 2D image generation.

The generative adversarial network (GAN) is a generative
model that has a unique parameter estimation approach [51]. The
model is divided into two parts, a generator and a discriminator;
the generator is trained to generate images so that the discrim-
inator cannot distinguish them from the ground truth images,
while the discriminator is trained to discriminate generated im-
ages from the known “ground truth" images. The two parts are
trained simultaneously to force the generator to produce images
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as similar to the ground truth images as possible, where similar-
ity is defined by the discriminator. Experiments have shown that
this model is capable of generating highly realistic images with
some exceptions. In particular, since the discriminator makes de-
cisions based on pixel-level distance metrics, the generator can
make unrealistic mistakes both obvious and important to humans,
e.g., a face with a displaced nose.

The deconvolutional neural network is a multi-layer model
composed of fully connected layers followed by two sets of con-
volutional layers–one tasked to generate design images and the
other to generate segmentation masks of the design [52]. This
model takes multiple design attribute to be generated (e.g., types
of chairs). The model assembles a deterministic function that
maps a set of input attributes to one output; however, this mod-
elling assumption does not align well with our goal of captur-
ing uncertainty from design attributes–we discuss this in detail
in Section 3.

The variational autoencoder (VAE) [30] used in this work
is an advanced version of the deconvolutional neural network,
with major differences in the method of statistically estimating
the model parameters of the model in its parametrization to in-
troduce randomness to the generating process. A detailed intro-
duction of the VAE model is in Section 3.

2.5 Validation of Generative Models

One challenging issue inherent to generative models is their
the lack of straightforward validation. The requirements of this
validation are twofold: The model needs to generate realistic 2D
images that can be recognized by humans as a particular cate-
gory of objects (e.g., cars), while at the same time, these images
must be different from any image the model has seen in the data
set, otherwise overfitting on the data set would model the sim-
ple solution of memorizing known training images. While the
former requirement leads the model to produce similar images
to the ones used in training, the later one forces the model in
the opposite direction (i.e., generalization via interpolation and
extrapolation).

Consequently, it is nontrivial to establish a quantitative val-
idation that reflects model performance on both requirements.
Research has been done using measurements such as pixel-level
Euclidean distance, image retrieval from the known data set, and
structured similarity indices from nearest neighbor images in the
training set. However, none of these methods can give direct
validation regarding the two requirements. In many cases, a gen-
erated 2D image that results in a favorable score under numerical
measures scores very low on visual quality as assessed by a hu-
man [29]. To address this issue, we propose to utilize a crowd as
a direct validation of the model’s capability to generate realistic
images.

3 PROBLEM FORMULATION

The problem formulation begins with assuming a fictitious
conceptual design scenario involving three ingredients: (1) A
“true" product form design space X containing the product
forms of all 2D images capturing what it means to be the par-
ticular design (e.g., a passenger vehicle); (2) a “complete" (pos-
sibly infinite) list of design attributes, denoted a∗, and obtained
by being the exact set of design attributes most preferred by the
targeted customer; and (3) a “perfect" design tool f ∗, able to
map deterministically a single complete design attribute list a∗
to a single design x ∈X :

x = f ∗(a∗) (1)

In reality, we do not have access to this complete set of de-
sign attributes a∗ (e.g., the customer would most prefer exactly
these bodyline curves, taillight shape and illumination, etc.), and
must instead settle for a dramatically smaller finite set of de-
sign attributes a (e.g., the customer would prefer a ‘Cadillac’
‘Coupe’). We now have a massive number of unknown latent
variables called “design features" denoted h as introduced in
[53]. In other words, the previous complete list of design at-
tributes is now partitioned into known design attributes and un-
known design features a∗ = {a,h}. This introduces uncertainty
into our originally deterministic function, which may now be rep-
resented according to a statistical distribution p∗ with unknown
functional form:

h∼ p∗(h). (2)

Since we do not know this functional form, we instead as-
sume the uncertainty from the random vector h may be captured
by a distribution parametrized by θ , giving us the conditional
distribution we aim to estimate:

x∼ pθ (x|a) (3)

Practically estimating the parameters of this distribution is chal-
lenging due to the high dimensionality of X , which itself is a
subset of a universal domain [3] of all 256-bit RGB values of the
number of pixels forming the 2D image (i.e., N = 256(3·pixels)).
Accordingly, we turn to a variational approximation [54] of the
conditional likelihood of the data, one that will be particularly
suited to online mode-seeking optimization methods.

This requires introduction of a latent random vector z as a
tool to make the variational approximation using a tractable dis-
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tribution qφ :

log pθ (x|a) = ∑
z

qφ (z|x,a) log pθ (x|a) (4)

= −∑
z

qφ (z|x,a) log pθ (z|x,a))

+ ∑
z

qφ (z|x,a)) log pθ (x,z|a))

= KL
(
qz|x,a||pz|x,a

)
+L (θ ,φ ;x)

where KL
(
qz|x,a||pz|x,a

)
is the KL divergence, which is always

non-negative. Therefore, the second term L (θ ,φ ;x) becomes a
lower bound of the conditional likelihood given in Equation (3),
and becomes the objective function we seek to maximize.

We expand L (θ ,φ ;x) into three terms, which are then
amenable to the deep generative model in Section 3.1:

L (θ ,φ ;x) = ∑
z

qφ (z|x,a)
(
log pθ (x,z|a)− logqφ (z|x,a)

)
(5)

= ∑
z

qφ (z|x,a)
(
log pθ (x|z,a)+ logpθ (z|a)− logqφ (z|x,a)

)
.

3.1 Deep Generative Model
We estimate the parameters θ and φ for the conditional

likelihood given in Equation (5) using a hierarchical paramet-
ric model (i.e., “deep learning”) that exploits invariance in 2D
images, as well as optimization techniques to obtain point esti-
mates to the values of these parameters. In particular, we use a
variational autoencoder (VAE), a variational Bayesian approach
introduced by Kingma and Welling [30] that learns a directed
probabilistic model by approximating the posterior expectation
with a reparametrization trick.

The VAE is made up of two networks: an “encoder” that
transforms the 2D images within the data space to a latent rep-
resentation (i.e., the last term in Equation (5), and a generative
“decoder” model that transforms the latent representation back to
a 2D image reconstruction in the data space, i.e., the first term in
Equation (5). We use an extension to the VAE that includes con-
ditioning on additional data [55–57], in our case known design
attributes a associated with a given design x. These conditional
terms allow the latent representation to instead focus on encod-
ing the uncertainty from features h not contained in the known
design attributes a:

z∼ Encoder(x) = qφ (z|x,a) (6)

x̂∼ Decoder(x) = pθ (x|z,a) (7)

The reparametrization trick discussed [30] expresses our in-
troduced latent random variable z ∼ qφ (z|x,a) with a determin-
istic variable z = gφ (ε,x,a), where ε is an independent “auxil-
iary" random variable, and gφ (·) is some vector-valued function

parametrized by φ . Further, we approximate this axillary vari-
able using Monte Carlo sampling:

Eqφ (z|x,a) [ f (z)] = Ep(ε)
[

f
(
gφ (ε,x,a)

)]
(8)

≈ 1
L

L

∑
l=1

f
(

gφ

(
ε
(l),x,a

))
with ε

(l) ∼ p(ε)

in which l denotes Monte Carlo draws and L denotes the to-
tal number of draws. Using Equation (8), we reparametrize the
lower bound of the conditional likelihood we are after in Equa-
tion (5):

L (θ ,φ ;x) ≈ 1
L

L

∑
l=1

log pθ

(
x|z(l),a

)
+

1
L

L

∑
l=1

log pθ (z(l)|a) (9)

−1
L

L

∑
l=1

qφ

(
z(l)|x,a

)
where z(l) = gφ

(
ε
(l),x

)
,ε(l) ∼ p(ε)

Lastly, we define qφ (z|x), pθ (z), pθ (x|z) as Gaussian distri-
butions, whose parameters θ and φ we estimate using the VAE:

qφ (z|x,a) = N
(

z; µφ (x,a) ,σ z
φ
(x,a)

)
(10)

pθ (z) = N (z;0,I) (11)
pθ (x|z,a) = N

(
x; µ (z,a) ,σ2 (z,a)

)
(12)

3.2 Model Architecture
The architecture of a deep hierarchical model concerns the

types of (i) “layers", i.e., vectors of functions that define function
compositions between layers; (ii) “neurons" or “filters" making
up the various layers, particularly their functional form; and (iii)
connectivity linking layers to each other via parameters θ and φ .

The chosen architecture significantly influences the perfor-
mance of the deep generative model, as architecture decisions
constrain the flow of information throughout the model. Poor
architecture choices increase the number of parameters of the
model θ and φ or sub-optimal generative performance. For a
VAE, a number of special layers is used to reduce the number of
parameters while trading off information capture of the underly-
ing data distribution. We show in Figure 3.1 the model architec-
ture that uses four types of layers as described below:

Fully Connected Layers With a fully connected layer,
the input x ∈ RBxN and the output y ∈ RBxM are associated with
the function of y = f (xT w+b), where w ∈ RNxM,b ∈ RM , and
f (·) denotes a nonlinear function–in our case, the Rectified Lin-
ear (ReLu).
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FIGURE 3. DEEP GENERATIVE MODEL ARCHITECTURE OF VARIATIONAL AUTOENCODER; ON THE LEFT IS THE ENCODER, WHILE THE
RIGHT IS THE DECODER. SHADED BOXES REPRESENT INPUTS, WHITE BOXES REPRESENT FULLY CONNECTED LAYERS, AND RECTANGU-
LAR PRISMS REPRESENT CONVOLUTIONAL AND POOLING LAYERS IN THE ENCODER, AND UPSAMPLING LAYERS IN THE DECODER.

Convolutional Layers Convolutional layers capture the
notion that there are translation and rotation invariance, such
as local regions forming image components that exist globally
across the image. Such convolutional filters greatly reduce the
number of parameters necessary in the layer relative to a fully
connected layer, while still capturing a similar amount of infor-
mation.

Similar to the fully connected layer, in a convolutional layer
the input x and the output y are associated with the function of
y = f (w

⊗
x+b), where

⊗
denotes the 2D convolution opera-

tion and f (·) denotes a nonlinear function, in which we use Rec-
tified Linear (ReLu) except the last layer in which no nonlinearity
function is employed.

Pooling Layers Because pixel value information is
highly redundant in images (i.e., neighbor pixels values are
highly correlated) additional measurements are taken to reduce
the number of parameters in the model. In a pooling layer, one
output value will be used to replace a square area of input val-
ues. In this work, we use max pooling layers with a pooling size
of 2 by 2, i.e., the maximum value of a 2 by 2 pixels grid, with
the rest discarded to reduce parameters by a factor of 2 for each
dimension.

Upsampling Layers Upsampling refers to the inverse of
a “pooling” operation, which is used to "upsample" the coded in-
formation back to the same dimension as the input images. This
operation necessarily lacks reconstruction information; however,
the choices for such approximate inversion are varied (e.g., fixed
location upsampling, average upsampling, and upsampling with
switch units). In the current work, we use average upsampling.

4 EXPERIMENT
Our goal in the experiment was to statistically estimate the

design space pθ (x) to obtain a mathematical representation with
realism and flexibility advantages as described in Section 1, us-
ing the model described in Section 3.1 and optimized using both
numerical techniques and crowdsourcing.

4.1 Dataset
The data set consisted of 179,702 data points, with each

point made up of a 2D image and four design attributes–make,
model, body type, and viewpoint–with corresponding dimen-
sionality shown in Figure 3.1. Each 2D image was downscaled
to 120x120 pixels using OpenCV, an open source computer vi-
sion library [58]. We then split this data of previous designs into
a “training set" and “validation set" with a 3:1 split ratio.

4.2 Numerical Parameter Estimation
The variational autoencoder described in Section 3.1 re-

quires a number of hyperparameters (i.e., user-defined values
such as learning rate and batch size) during the statistical esti-
mation of the parameter sets θ and φ , as well as hyperparame-
ters of the architecture itself (e.g., number of neurons or filter in
a layer). We give these architecture hyperparameters in Figure
3.1. This architecture was implemented using Theano [59], an
open source symbolic differentiation library with a graph-based
compiler and GPU-acceleration support.

First-order methods have shown to be often better suited
to estimation of deep generative models, particularly when ex-
tended with terms that mitigate being affected by saddle points
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FIGURE 4. MORPHING BETWEEN VARIOUS BODY TYPES FROM THE ESTIMATED PRODUCT FORM DESIGN SPACE.

[60] and sharp discontinuities [61]. For these reasons, we use the
ADAM optimizer [62], which has is particularly suited to param-
eter estimation of deep generative models. We use the ADAM
optimization parameter of β1 = 0.1 and β2 = 0.2 with a learning
rate of α = 0.0002. Moreover, estimation of the parameter sets θ

and φ in practice requires the use of “mini-batches” due to large
data set sizes; accordingly, we used a mini-batch size of 100.

4.3 Crowdsourced Hyperparameter Estimation
The goal for crowdsourced hyperparameter estimation was

to assess whether there were significant differences in visual
quality of generated 2D images when varying the number of la-
tent random variables Z used in the model architecture as de-
scribed in Section 3.1. This assessment was performed as it has
been shown that using numerical performance measures (e.g.,
log-likelihood) does not necessarily correspond with human per-
ception of visual quality [29]. While certain theories (e.g., man-
ifold hypothesis [63]) suggest that the effective dimensionality
may not be best modeled as fixed, the addition of humans-in-the-
loop may provide complementary advantages.

4.3.1 Participants A total of 69 participants were
gathered using the crowdsourcing platform Amazon Mechani-
cal Turk using an open call and a monetary incentive. We filtered
out participants that “clicked through" the online application if
their responses took less than 3 seconds per “survey question."

4.3.2 Procedure A web application with a database
backend was developed to collect participant responses to gen-
erated 2D images with varying model architecture hyperparam-
eters. Participants were first directed to a home page, which de-
scribed the instructions for inputting visual quality responses to
2D images.

After clicking to proceed past the instructions, participants
were presented with an ordered set of 2D images, and asked to
select the 2D image that was most realistic. Each ordered set
contained three 2D images, corresponding to three settings of
the hyperparameters controlling the number of dimensions (i.e.,
32, 128, 256 dimensions) in the latent representation Z. Each
ordering was random, in order to not bias participants, while all
the same design attributes were held constant (e.g., ‘Cadillac,’
‘coupe.’). The possible set of 2D image triplets contained all
pairwise combinations of bodytypes from the sideview of the ve-
hicle.

Participants were only allowed to click one of the three 2D
images, and were able to change their selection. After partic-
ipants completed 20 randomly selected 2D image triplets, they
were redirected to web page thanking them for their time and
presenting them with a unique code for monetary redemption.

5 RESULTS AND DISCUSSION
We explore the estimated product form design space by mor-

phing between various pairs of design attributes. To show the
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FIGURE 5. MORPHING BETWEEN VARIOUS BRANDS FROM THE ESTIMATED PRODUCT FORM DESIGN SPACE.

FIGURE 6. ROTATIONS OF VARIOUS BODY TYPES FROM THE ESTIMATED PRODUCT FORM DESIGN SPACE.
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FIGURE 7. GENERATED VEHICLE BETWEEN ‘SEDAN’ AND ‘SUV’
FOR RANDOMLY SET BRAND THAT LOOKS LIKE A ‘CROSSOVER.’

flexibility of the estimated mathematical representations pθ (x),
we morph between various body types in Figure 4, various
brands in Figure 5, and rotational viewpoints in Figure 6.

The designs x sampled for these results are all artificially
generated (i.e., none are in the dataset). Moreover, we show mul-
tiple steps in between each design attribute pair to indicate that
we are not overfitting on the data set, as none of these generated
designs exist. In particular, we observe that the visual quality of
the generated designs is uniform across various morphing steps
between known design attributes (e.g., from coupe to SUV); this
reinforces the notion that we are not simply overfitting, and in-
stead we are estimating the “true" product design space pθ (x|a).

The motivation for this work was developed in part from
working with practicing designers in the automotive industry
and recognizing the necessity of a design representation that
can morph between various brands and body types, yet realis-
tic enough to convey sufficient meaning to designers [39]. This
representation is not limited to brand studies. A number of de-
sign questions can be explored. For example, we show in Figure
7 a generated vehicle between a ‘sedan’ and an ‘SUV,’ which is
currently the fastest growing design segment in the automotive
market. This type of design generation can serve as inspiration
to designers working on designs for new market segments [5].

Figure 8 shows the results of the crowdsourced parameter
optimization. Preliminary results indicate that we cannot conclu-
sively state whether the crowd was able to discriminate between
various hyperparameter settings during the design space estima-
tion. Further research is required into using a crowd to fine-tune
parameters affecting image quality after an initial computer-only
optimization is performed.

Thus, the hypothesized value of using crowdsourced opti-
mization requires deeper investigation. If the crowd is shown to
improve the statistical estimation procedure, we may be able to
build more robust crowd-powered optimization systems for these
generative models. The current approach is not in real time; how-

FIGURE 8. EFFECT OF VARIOUS NUMBER OF z RANDOM VARI-
ABLES IN HIDDEN REPRESENTATION ON GENERATED 2D IMAGE
QUALITY AS ASSESSED BY CROWD. MORPH INDEX REFERS TO
HOW FAR BETWEEN TWO KNOWN DESIGN ATTRIBUTES A DE-
SIGN WAS MORPHED–E.G., 0 AND 8 MAY BE ‘CONVERTIBLE’ AND
‘TRUCK’, RESPECTIVELY.

ever, a worthwhile goal may be to build a real-time optimization
loop including the crowd, particularly if incentivized as in the
emerging area of gamification [64].

5.1 Limitations and Future Work
Interpretation of the latent space remains a challenging and

potentially rewarding goal in this research. Recent nonlinear pre-
dictive models offer significantly improved generalization per-
formance of design task prediction accuracy, and consequently
improved capture of the underlying physics of the design task,
e.g., preference prediction and market segmentation [65–67].

These nonlinear and network models are in contrast with the
interpretable linear models commonly used in design task mod-
eling, which often work on strong modeling assumptions com-
prised of main effects and pairwise interaction terms, and thus
neglect all other statistical dependencies amongst design vari-
ables. Future work towards interpretation of these latent repre-
sentation may offer much deeper insight into underlying design
perceptions and preferences of customers, translated into action-
able design decisions that capture how the designer can adjust
design attributes to elicit desired preferences within a specific
population.

We show in Figure 9 an example of the design feature
“color" that we do not currently capture. While this feature may
be simpler to capture using crowds, numerous other features still
exist that are not as straightforward. Current work towards such
“feature interpretation" has shown preliminary promise, includ-
ing data-driven approaches to predict which visual features of a

9 Copyright © 2016 by ASME



FIGURE 9. GENERATED DESIGN DISPLAYING THE DESIGN FEA-
TURES ‘COLOR,’ WHICH WE DO NOT YET CONTROL.

design most elicit attention [68]. These approaches aim to move
into the causality behind features in deep convolutional neural
networks [69, 70].

Interpreting such features may lead to new shape grammars.
The combination of top-down statistical estimation of the design
space and bottom-up definition of the space using shape gram-
mars may be a valuable direction for future research, particu-
larly by analyzing and subsequently merging high-level statis-
tical features with hand-engineered shape grammars. Validat-
ing such combinations, and more generally of visual fidelity of
statistical design representations, may be aided by methods that
use humans-in-the-loop more advanced than in the present work,
such as online crowdsourcing [71], or in-person eye tracking
[72, 73].

6 CONCLUSION
Human designers use a mental design representation of

product form that is both flexible and realistic, allowing efficient
exploration of the design space during the conceptual design pro-
cess. Mathematical representations of the product form design
space impose constuctivist restrictions on the design space and
trade off representation flexibility for representation realism.

We changed a statistical distribution as a mathematical rep-
resentation that is more flexible and realistic than previously pro-
posed representations. We formulated this representation by as-
suming a “perfect" conceptual design scenario and progressively
introduced uncertainty as dictated by the real world. We approx-
imated this true statistical distribution using a deep generative
model, in particular a variational autoencoder, which is amenable
to efficient computing of large-scale data sets.

We conducted an experiment in the product form domain of

automotive styling, using design attributes and 2D images of au-
tomobile designs from the last decade. The results showed that
we are able to find a design representation that is both flexible
and realistic in exploring the design space over design attributes
such as body type, brand, and viewpoint. We also examined us-
ing a crowd to improve the parameter estimation process of the
deep generative model; our preliminary results showed that we
are not yet able to improve our generative model results to statis-
tically significant levels in this way.

Lastly, we discussed a number of possible improvements to
this work within the emerging area of data-driven design. In par-
ticular, interpretation of design features otherwise wrapped up
in uncertainty offers design researchers and practicing designers
opportunities for valuable design insight. Further investigation
into crowdsourcing mechanisms, real-time and gamified, may
prove fruitful. Aligning design augmentation tools with practic-
ing designers and design researchers who study expert designers
remains important and can further the value of design automation
tools.
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