Fig. 1. Scaling of postcanine maxillary tooth area (P3–M3) to wild-shot body mass in higher primates (odontometric data from Swindler 1976). The exponent (α) of the power function \(y = \beta x^\alpha \) was estimated by least-squares regression upon the assumption of body mass as an independent determinant. Inclusion of P2 of ceboids and major axis fits do not affect our conclusions about \(P. \) paniscus. Species (male, female) included in the analysis are: \textit{Ateles geoffroyi} (1, 2), \textit{Ateles tripartitus} (3, 4), \textit{Cebus apella} (5, 6), \textit{Saimiri sciureus} (7, 8), \textit{Ateles seniculus} (9, 10), \textit{Cercocebus cephus} (11, 12), \textit{C. nictitans} (13, 14), \textit{C. neglectus} (15, 16), \textit{Cercopithecus albigena} (17, 18), \textit{C. galeritus} (19, 20), \textit{Macaca nemestrina} (21, 22), \textit{M. fascicularis} (23, 24), \textit{Papio cynocephalus} (25, 26), \textit{Theropithecus gelada} (27, 28), \textit{Colobus badius} (29, 30), \textit{C. polyomatus} (31, 32), \textit{Presbytis aygula} (33, 34), \textit{Hylobates klossi} (35, 36), \textit{H. agilis} (37, 38), \textit{H. malolo} (39, 40), \textit{Pongo pygmaeus} (41, 42), \textit{Gorilla gorilla} (43, 44), \textit{P. troglodytes} (45, 46), and \textit{P. paniscus} (47, 48).

For historic times their range may have extended farther, perhaps even into Angola (Reynolds 1967). Furthermore, the eastern limit of the range of \textit{P. paniscus} remains unknown. The best evidence places it at the Lomami River, but some puts it at the Lualaba. Even if the precise range of \textit{P. paniscus} could be identified, another problem confounds ecological speculations such as Johnson’s. Chimpanzees occupy a wide range of environments: humid lowland forest, savanna, gallery forest, secondary forest of all kinds, and even cultivated areas (Kortlandt 1962, van Lawick-Goodall 1968, Suzuki 1969, Albrecht and Dunnett 1971, Jones and Sabater Pi 1971). It is difficult to base a theory of bonobo evolution on ecological arguments when the isolating mechanism is so tenuous. We do not feel that the island analogy is accurate, especially if the present drainage of the Zaire Basin and the “island” of rain forest is a phenomenon as recent as the last 500,000 to 1,500,000 years (Cahen 1954 and Mortelmans 1967, cited by Horn 1976).

The evidence does not indicate, as is suggested by Johnson, that \textit{P. paniscus} is a “specialized insular dwarf.” Furthermore, no statement about the specialized (derived) or generalized (primitive) nature of a particular trait or complex can be made without first establishing the primitive or derived state (i.e., morphcline polarity) of that character for the group in question. We cannot engage in productive discussion on the evolutionary history of \textit{P. paniscus} (such as this one by Johnson and others that have appeared in the last few years) until solid comparative, quantitative morphological data are obtained and we have more accurate estimates of scaling parameters.

by Milford H. Wolpoff
Department of Anthropology, University of Michigan, Ann Arbor, Mich. 48109, U.S.A. 20 i 81
I firmly agree with Johnson’s discussion of the bonobo as an unsuitable prototype for the Hominidae. Moreover, there are some persistent problems that make any consistent cladistic interpretation of \textit{Homo} and \textit{Pan} difficult to assess.

From the perspective of the hominids, marked sexual dimorphism and an extremely powerful masticatory apparatus especially suited to maximizing vertical forces were recognized in some of the early hominids (robust australopithecines) by Robinson (1956, 1962) and later predicted as a general ancestral condition by Jolly (1970a). Lovejoy (1974) clearly demonstrated the polished form of bipedal locomotion attained by these hominids. These conditions were then demonstrated in the earlier \textit{A. africanus} sample from Sterkfontein and Maka-
pangast (Wolpoff 1973, 1976; Lovejoy, Heiple, and Burstein 1973), and their expression in the even earlier A. afarensis sample (Johanson and White 1979) clearly points to their importance as ancestral conditions for the hominids.

At the same time, immunodiffusion studies show an especially close relationship between Homo, Pan, and Gorilla (Dene, Goodman, and Pychodko 1976, Sarich and Cronin 1976). Indeed, the amount of DNA difference between Pan and Homo is surprisingly small, approaching the magnitude normal for subspecies differences (King and Wilson 1975). If these data, presumably reflecting genetic divergence, suggest a close relationship (and imply a late divergence) for the hominid and African pongid lineages, the morphology of A. afarensis provides additional support.

In this species, polymorphism in P, form extends to include a single cusped variant that is sectoral by any definition. Evidence from P, wear (Wolpoff 1979, Wolpoff and Rusin 1981), as well as the wear on the newly discovered BMNH 18773 lower canine (White 1980), shows that anterior cutting was still a normal variant of A. afarensis dental function. Moreover, a number of specific aspects of the cranial base and palate particularly resemble those of Pan (Johanson and White 1979). Thus, in sum, the morphology of the earliest recognized hominid species supports the notion of an early appearance of certain unique hominid features (interestingly, some of these are features that are not well expressed in modern populations) while at the same time supporting the biochemical indications of a fairly recent divergence from Pan or a Pan-like form.

Where the picture becomes unfocused is over the problem of divergence itself and the question of what, if any, morphological changes are associated with it in the two diverging lineages. While the evidence just discussed indicates that some of the hominid characteristics we can deal with directly (powerful masticatory apparatus, marked sexual dimorphism, bipedal locomotion) can probably be traced back to the time of divergence (especially if it is recent), the question is whether any or all of these may precede divergence. If so, we would be forced to consider a number of characteristics found in Pan as the derived condition (in spite of similarities between Pan and Proconsul in many of these), and our attention would be directed to the unique features of Pan in the all-important consideration of why the divergence occurred.

What helps bring this possibility to the forefront is the question of a ramapithecine ancestry for hominids. The ramapithecine adaptive radiation is characterized by two of the three hominid features just discussed—a powerful masticatory apparatus especially suited to vertical loading and marked sexual dimorphism (Greenfield 1979, Wolpoff 1980). (None of the known postcranial remains [from Hungary and Pakistan] indicate an adaptation to bipedal locomotion.) Several recent analyses have suggested an especially close relation between one of the ramapithecine species and Pongo (Greenfield 1980, Wolpoff 1980). The problem is that both morphological and biochemical evidence suggests an earlier divergence for Pongo. This would indicate that at least some of the ramapithecine species diverged from the lineage leading to hominids before the hominid and African pongid lineages diverged and thus that the ramapithecine features represent the ancestral condition for all three of these lineages.

Should this be the case, it might be more productive to consider A. afarensis as simulating a possible prototype for the ancestors of the bonobos than vice versa. Of course, this need not be the case. The alternative possibility is that none of the ramapithecines are on the lineage leading to the hominids and African pongids. This notion is also not without support. Certainly, the fact that only one of the ramapithecine forms is African (represented by less than a handful of specimens) may not be wholly irrelevant. This possibility would allow the hypothesis that the hominid features discussed above are associated with the divergence event or its adaptive conse-

quences. One could then turn to a Pan-like (although, for the reasons Johnson discusses, clearly not a particularly bonobo-like) model for the predivergence hominid form.

I don’t believe this issue can be settled at present. However, consideration of the boundary conditions helps delimit the form that a solution must take. In particular, it seems increasingly unlikely that these ancestral models can be combined. Any form of a ramapithecine ancestry for hominids draws our attention to certain (therefore) derived features in Pan as an important consequence of divergence, while only the complete elimination of the ramapithecines from hominid ancestry allows us to consider some of the important features of the early hominids as uniquely hominid and to hypothesize a role for them in the process of divergence or its immediate consequences.

by Adrienne Zihlman

Department of Anthropology, University of California, Santa Cruz, Calif. 95064, U.S.A. 12 n 81

Johnson has set up a straw ape which bears little resemblance to the prototype for the common ancestor of chimpanzees/humans/gorillas that I proposed, and he has proceeded to knock it down with conceptual cannonballs like “synapomorphies,” “neontology” and “insular dwarfism.” He also misattributes to me the phrase “ideal prototype,” which I have never used: I have merely suggested that, of all living hominoids, the pygmy chimpanzee, or bonobo, is most like the probable common ancestor (Zihlman et al. 1978).

This conclusion is based on three lines of evidence: biochemical, comparative anatomy, and the fossil record. Comparisons of DNA and numerous proteins indicate that humans, chimpanzees, and gorillas diverged from a common ancestor about 5,000,000 years ago, that orangutan and gibbon are about twice as distant from these three as the three are from each other, and that Old World monkeys are about four times as distant. Assuming that the common ancestor was an ape, we then have a choice between a chimpanzee and a gorilla. Even before the early African hominoids were discovered, comparative anatomists implied that the common ancestor of humans and African apes must have been something like a small chimpanzee (Gregory 1930, Coolidge 1933). As there is no fossil record of chimpanzees, we must choose between the two living species or imagine a composite of both.

Granted that chimpanzees are more generalized than gorillas (Simpson 1963), my choice of P. paniscus in preference to P. troglodytes is based on a number of anatomical and behavioral characteristics. Though smaller on average than troglodytes, paniscus overlaps it considerably in body weight and differs from it mainly in its proportions: a narrower chest, shorter upper limbs, lighter trunk, and heavier lower limbs, all differences that tend in the “human” direction and add up to a lower center of gravity (Zihlman and Cramer 1978, Zihlman 1979b). Behaviorally, this results in the bonobo’s being oriented bipedally more than the common chimpanzee and being, in this respect, more apt precursor to fully bipedal hominids (Zihlman 1980).

Going to the fossil record, we find that the earliest known African hominids, A. afarensis from East Africa and A. africana from South Africa, are strikingly similar to P. paniscus in several ways: mean femur length, as well as hip, knee, and ankle size, are within a standard deviation of each other. “Lucy’s” (AL 228) humerus is shorter than that of paniscus, and the fossil’s humerus/femur ratio of 84 is intermediate between that of paniscus at 98 and that of modern man at 76 (Zihlman 1979a). And Lucy’s pelvis is that of a habitual biped. Because the brain size of A. afarensis lies within the chim-

Serials

- The University of Maryland's Center for Archaeoastronomy, now in its third year, has developed an interdisciplinary program in research and education that focuses on the anthropological study of indigenous astronomical systems, skylore, and cosmologies of both ancient and contemporary cultures. The Center's bulletin has expanded to become the quarterly journal *Archaeoastronomy*, which serves uniquely as a medium for scholarly exchange in this field. Subscriptions are available at U.S. $10 for individuals, $15 for institutions (with an additional $3 per year for postage outside the United States); back issues may be ordered at the same price. For further information on the Center and its publications, please write: John B. Carlson, Center for Archaeoastronomy, University of Maryland, College Park, Md. 20742, U.S.A.

- Periodic bulletins in English and in Hebrew announcing the activities of the Israel Anthropological Association are available to overseas scholars with membership in the Association. A more serious publication effort in the form of an annual research report is planned. Checks for U.S. $10 should be made payable to the Israel Anthropological Association and sent to Harvey Goldberg, c/o Department of Sociology and Social Anthropology, Hebrew University, Givat Ram, Jerusalem, Israel. Notices of dissertations or published work for which the fieldwork was conducted in Israel will be welcomed for inclusion in forthcoming bulletins.

- Mesolithic Miscellany, a new newsletter devoted specifically to the Mesolithic period in Europe, will appear twice a year in November and May and be available for U.S. $3 per year. Coverage includes recent publication titles with abstracts, new book titles with tables of contents, meeting summaries and lists of presented papers, book reviews, short research summaries, requests for information, new finds, and the like. A section devoted to debate and discussion appears once a year.

Institutions

- The Association for Anthropological Diplomacy, founded on December 7, 1980, aims to enhance the systematic study of the relevance of anthropology to diplomacy and vice versa and to foster the practical application of anthropological diplomacy to issues and problems in the modern world. The executive board includes Usman Sallah (Ambassador of Gambia to the United States and the United Nations), Paul Magnarella (University of Florida), Lincoln Landis (consultant on Soviet affairs, Washington, D.C.), Diademo M. Yaq (Capital Publishers, Inc.), and Rolando Alum (Center for Labor Studies, New York). Mario D. Zamora (College of William and Mary) is president; Dorian Baron (College of William and Mary) is secretary-treasurer, and Liz Hammer (College of William and Mary) is managing editor of the newsletter. Scholars and diplomats from some 100 nations constitute an advisory board. Applications for membership, at U.S. $15 for individuals ($10 in Asia, Africa, and Latin America), $10 for students, and $30 for institutions, should be sent to Mario D. Zamora, Department of Anthropology, College of William and Mary, Williamsburg, Va. 23185, U.S.A. (Checks or money orders should be made payable to the Association for Anthropological Diplomacy.)