1. Consider the function

\[p(x) = \begin{cases}
0, & \text{if } x < 0 \\
kx^2(1-x), & \text{if } 0 \leq x \leq 1 \\
0, & \text{if } x > 1
\end{cases} \]

(a) For what value of \(k \) is \(p(x) \) a probability density function? (3 pts)

We have

\[
1 = \int_{-\infty}^{\infty} p(x)dx = \int_{0}^{1} kx^2(1-x)dx = \int_{0}^{1} k(x^2 - x^3)dx = k \left(\frac{x^3}{3} - \frac{x^4}{4} \right) \bigg|_0^1 = k \frac{1}{12}.
\]

Thus \(k = 12 \).

(b) Using that value of \(k \), find the probability that \(x \) is greater than 0.5. (2 pts)

We set up

\[
\int_{0.5}^{\infty} p(x)dx = \int_{0.5}^{1} 12(x^2 - x^3)dx = 12 \left(\frac{x^3}{3} - \frac{x^4}{4} \right) \bigg|_{0.5}^{1} = \frac{11}{16}.
\]

(c) Find the mean. (3 pts)

We set up and calculate

\[
\text{mean of } x = \int_{-\infty}^{\infty} xp(x)dx = \int_{0}^{1} 12x(x^2 - x^3)dx = \int_{0}^{1} 12(x^3 - x^4)dx = 12 \left(\frac{x^4}{4} - \frac{x^5}{5} \right) \bigg|_0^1 = \frac{12}{20} = 0.6.
\]

(d) Find the median. (Hint: Use your calculator, but not do do any definite integrals.) (3 pts)

We set up the definition of the median \(T \) and obtain

\[
0.5 = \int_{-\infty}^{T} p(x)dx = \int_{0}^{T} 12(x^2 - x^3)dx = 12 \left(\frac{T^3}{3} - \frac{T^4}{4} \right).
\]

Using a calculator to solve numerically using either the root or intersect function yields \(T \approx 0.61427 \).
2. Use the formulas for the sums of geometric series on the following. (3 pts each)

(a) \(1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \cdots\)

The infinite geometric series formula is \(\sum_{n=0}^{\infty} ax^n = \frac{a}{1-x}\). This series has \(a = 1\) and \(x = -\frac{1}{2}\) and so the sum is
\[
\frac{1}{1 - (-\frac{1}{2})} = \frac{1}{\left(\frac{3}{2}\right)} = \frac{2}{3}
\]

(b) \(\sum_{n=5}^{15} \left(\frac{2}{3}\right)^n\) The finite geometric series formula is \(\sum_{i=0}^{n-1} ax^i = \frac{a(1-x^n)}{1-x}\).
\[
\left(\frac{2}{3}\right)^5 + \left(\frac{2}{3}\right)^6 + \cdots + \left(\frac{2}{3}\right)^{15} = \left(\frac{2}{3}\right)^5 \left(1 + \left(\frac{2}{3}\right) + \cdots + \left(\frac{2}{3}\right)^{10}\right)
\]
\[
= \left(\frac{2}{3}\right)^5 \left(\frac{1 - \left(\frac{2}{3}\right)^{11}}{1 - \left(\frac{2}{3}\right)}\right); \]
where we used the finite geometric series formula with \(a = 1\), \(x = \frac{2}{3}\), and \(n-1 = 10\) once we factored out the \(\left(\frac{2}{3}\right)^5\).

3. Suppose that you make monthly deposits into a savings account of $250, with the first deposit occurring today. Every month, your account pays 4% interest. Let \(B_n\) represent the balance in your account immediately after the \(n\)th deposit.

(a) Find \(B_1\), \(B_2\), and \(B_3\). (3 pts) With each deposit, the balance increases by $250. Moreover, the amount in the account at the time of the previous deposit has increased by 4%, therefore is multiplied by 1.04. We have
\[
B_1 = 250, \quad B_2 = 250 + B_1 \cdot 1.04 = 250 + 250(1.04)
\]
\[
B_3 = 250 + B_2 \cdot 1.04 = 250 + (250+250(1.04))1.04 = 250+250(1.04)+250(1.04)^2
\]

(b) Find a closed form, explicit formula (that is, no summation signs or + \cdots +) for \(B_n\). (5 pts) We extrapolate the pattern and observe
\[
B_n = 250 + 250(1.04) + 250(1.04)^2 + \cdots + 250(1.04)^{n-1}.
\]
Using the finite geometric series formula with \(a = 250\) and \(x = 1.04\) we obtain
\[
B_n = 250 \frac{\left(1 - 1.04^n\right)}{\left(1 - 1.04\right)}.
\]