1. Here is the diagram:
2. Say that some language L is accepted by an FSA F. Let $\{a_1, ..., a_n\}$ be the alphabet. Call the complementary language L^*. We need to design a machine that will accept L^*. The basic idea is simple: There are two ways that a string can fail to be in L: either F reads the whole string but terminates in a non-final state, or it terminates before reading the entire string. Thus we construct our machine F^* to accept L^* by changing all the final states of F to non-final states of F^* and non-final states of F^* to final states of F. That will take care of the first issue.

To take care of the second issue, we’ll add a new state $q_{terminate}$, which just reads everything it sees and stays put. We add the tuples $(q_{terminate}, a_i, q_{terminate})$ for every i.

Make this a final state of F^*. When does the machine go into the state $q_{terminate}$? Here’s when:

Terminating Instruction: For any state q of F, say there is a letter a_i for which q has no instructions. That is: there is no state q' such that (q, a_i, q'). Then we add the tuple $(q, a_i, q_{terminate})$.

Note that every transition of F is a transition of F^*; the only new transitions in F^* are those added by the “terminating instruction”.

The diagram is a bit cluttered with all the letters labelling arrows, so if you find it easier to read, here is a color coded version (Gold = [Chemical: au] = a, blue = b, cyan = c)
Claim: F^* accepts a string if and only if the string is not accepted by F.

Proof (Claim): There are two directions we need to take care of.

\Rightarrow

Say that $\sigma = \sigma_1 \cdots \sigma_k$ is a string that is accepted by F. Then F reads σ and terminates in some final state \bar{q}. Since every transition of F is a transition of F^*, this means that F^* reads σ and terminates in \bar{q}. But by the design of F^*, since \bar{q} is a final state of F, it is not a final state of F^*. That is, F^* does not accept σ.

[Bit of elementary logic: Proving "If not-A then not-B", as we have done here, also proves "If A then B". Hence we have proven the \Rightarrow direction.]

\Leftarrow

Say that $\sigma = \sigma_1 \cdots \sigma_k$ is a string that is not accepted by F. Then one of two things happens when F is fed σ: either i) F doesn’t read the whole string, or ii) F reads the whole string and terminates in a non-final state \bar{q}. If ii), then since the transitions of F are also transitions of F^*, this means that F^* reads all of σ and halts in the same state \bar{q}, which by construction of F^* is a final state of F^*. So F^* accepts σ. If i), then on reading some letter σ'_j in σ F doesn’t read further. Say F is in state \bar{q} when it is reading σ_j. Since F reads no further, there must be no transition $\langle \bar{q}, \sigma_j, q' \rangle$ for any q' in F. Thus by the construction of F^* F^* has a transition $\langle \bar{q}, \sigma_j, q_{\text{terminate}} \rangle$; in $q_{\text{terminate}}$, the rest of the string σ is read. Since $q_{\text{terminate}}$ is a final state of F^*, F^* accepts σ in this case too.

3. a) False. The language containing all the concatenations of a and b is regular, since it is the Kleene $*$ of $\{a\} \cup \{b\}$. The set DUPLICATES described on p. 109 - 110 and in lecture is a subset of $\langle \{a\} \cup \{b\} \rangle^*$ but it is not regular. Similarly, the language $L = \{aa\cdots a bb\cdots b / n \in \mathbb{N}\} = \{\epsilon, ab, aabb, aaabbb, aaaaabbb, \ldots\}$ that we proved not to be regular on p.12 of this week’s notes is a subset of $\langle \{a\} \cup \{b\} \rangle^*$.

b) True. We showed in question 2 that the complement of a regular language is regular. Note that $\{xy/x \in L \text{ and } y \not\in L\} = \{x|x \in L\} \cup \{y|y \not\in L\}$