Textbook problems: Ch. 8: 8.6, 8.8

8.6 A resonant cavity of copper consists of a hollow, right circular cylinder of inner radius \(R \) and length \(L \), with flat end faces.

\(a) \) Determine the resonant frequencies of the cavity for all types of waves. With \((1/\sqrt{\mu\epsilon R}) \) as a unit of frequency, plot the lowest four resonant frequencies of each type as a function of \(R/L \) for \(0 < R/L < 2 \). Does the same mode have the lowest frequency for all \(R/L \)?

\(b) \) If \(R = 2 \) cm, \(L = 3 \) cm, and the cavity is made of pure copper, what is the numerical value of \(Q \) for the lowest resonant mode?

8.8 For the Schumann resonances of Section 8.9 calculate the \(Q \) values on the assumption that the earth has a conductivity \(\sigma_e \) and the ionosphere has a conductivity \(\sigma_i \), with corresponding skin depths \(\delta_e \) and \(\delta_i \).

\(a) \) Show that to lowest order in \(h/a \) the \(Q \) value is given by \(Q = Nh/(\delta_e + \delta_i) \) and determine the numerical factor \(N \) for all \(l \).

\(b) \) For the lowest Schumann resonance evaluate the \(Q \) value assuming \(\sigma_e = 0.1 \) \((\Omega m)^{-1}\), \(\sigma_i = 10^{-5} \) \((\Omega m)^{-1}\), \(h = 10^2 \) km.

\(c) \) Discuss the validity of the approximations used in part \(a) \) for the range of parameters used in part \(b) \).