1 Course intro

Notes:

- Take attendance.
- Instructor introduction.
- Handout: Course description.
 - Note the exam days (and don’t be absent).
 - Bookmark the course webpage.
 - Matlab: We’ll use it but I won’t have time to teach coding—note the office hours.
 - Tests: non-programmable calculators only, plus one-page of notes (one-sided for midterm, two-sided for final).
- Assigned reading: Bradie, chapter 1.

- Not all topics from the text will be covered in class, some homework problems / test problems may come from material in the text or course webpage, even if they aren’t explicitly covered in class.

Numerical methods

- How to solve equations with computers
- Building blocks of all computer models
- How to use them – we cannot always trust a computed result
- “Black box” syndrome: Modelers beware!

The following graphic depicts 9 different models’ solutions to the linear advection equation in spherical geometry. The models are all either operational climate models.
2 Representing numbers

Question 1:
- What representations are exact?
- Which are approximate?

2.1 Symbolic representation

Example 1:
- \(\pi \)
- \(e \)
- \(\frac{2}{3} \)
- \(\sqrt{2} \)
2.2 Numerical representation

We use a positional system. The position of each digit relative to the point guides our understanding of the number.

\[x = \pm (d_n d_{n-1} d_{n-2} \cdots d_1 d_0. d_{-1} d_{-2} \cdots)_{\beta} \]
\[= \pm (d_n \beta^n + d_{n-1} \beta^{n-1} + \cdots + d_0 \beta^0 + d_{-1} \beta^{-1} + d_{-2} \beta^{-2} + \cdots) \]

\[\beta = \text{base}, \]
\[d_i = \text{digits}, \quad 0 \leq d_i \leq \beta - 1 \quad \text{for all } i \]

Other common bases are \(\beta = 8 \) and \(\beta = 16 \); perhaps \(\beta = 60 \)?

Example 2: \(\beta = 10 \) : decimal

- \((2013)_{10} = 2 \cdot 10^3 + 0 \cdot 10^2 + 1 \cdot 10^1 + 3 \cdot 10^0 \)
- \((0.360)_{10} = 3 \cdot 10^{-1} + 6 \cdot 10^{-2} + 0 \cdot 10^{-3} \)

Example 3: \(\beta = 2 \) : binary

- \((101011.01)_{2} = 1 \cdot 2^5 + 0 \cdot 2^4 + 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0 + 0 \cdot 2^{-1} + 1 \cdot 2^{-2} \)
 \[= 32 + 8 + 2 + 1 + 0.25 = (43.25)_{10} = 4 \cdot 10^1 + 3 \cdot 10^0 + 2 \cdot 10^{-1} + 5 \cdot 10^{-2} \]

Question 2: Are the above numerical representations exact?

\[\triangle \]

Question 3: Why do humans prefer the decimal representation? Why would binary make sense for computers?

\[\triangle \]

2.3 Floating point representation

- Computers use a ‘floating point representation’ for real numbers.
- Constant number of significant digits.

Unlike the previous two sections, floating point representations presume a finite number of digits, and hence necessarily approximate irrational numbers and even some rationals.

Question 4: Is a floating point representation exact?

\[\triangle \]
Question 5: Why would this be necessary in a typical computer, but not necessarily so for a human?

A floating point number is represented as

\[x = (0.d_1d_2\cdots d_n)_{\beta} \cdot \beta^e \quad d_1 \neq 0 \]

where \(n \) is the number of significant digits, \(\beta \) is the base, and \(e \) is the exponent. The string of digits, \(d_1d_2\cdots d_n \) is called the mantissa.

A floating point number system is defined by \(n, \beta \) and \(M \), where \(M \) is an integer such that \(-M \leq e \leq M\).

In IEEE double precision (the standard for most scientific computing), \(\beta = 2, n = 53, \) and \(M = 1023 \). Numbers are stored across 64 bits (bit = binary digit). 1 bit = sign of mantissa, 1 bit = sign of exponent, the mantissa is stored across 52 bits, which leaves 10 bits for the exponent.

Notes

- Floating point number systems are discrete (finite and not continuous) sets
- They have a maximum element and a minimum element
- They contain the number zero, and have a smallest positive element and a largest negative element

Question 6: What does multiplication by \(\beta^e \) do in (1)?

Example 4: Consider the floating point system defined by \(\beta = 2, n = 4, \) and \(M = 3 \).

1. What is the largest element in this set?
 The largest element in any floating point system will have every \(d_i = \beta - 1 \), and the largest possible exponent. Thus,
 \[
x_{\text{max}} = (0.1111)_2 \cdot 2^3 \]
 \[
 = (2^{-1} + 2^{-2} + 2^{-3} + 2^{-4}) \cdot 2^3 = 2^2 + 2 + 1 + 0.5 \]
 \[
 = (7.5)_{10}
 \]

2. What is the smallest positive element of this set?
 The smallest positive number in the system will have only 1 nonzero significant digit, and the minimum exponent:
 \[
x_{\text{min}} = (0.1000)_2 \cdot 2^{-3} \]
 \[
 = 2^{-4} \]
 \[
 = (0.0625)_{10}
 \]
Definition 1. Absolute error, E_A. Let $p \in \mathbb{R}$ be a real number and let p^* be an approximation of p.

$$E_A = |p - p^*|$$

Definition 2. Relative error, E_R. Let $p \in \mathbb{R}$ be a real number and let p^* be an approximation of p.

$$E_R = \left|\frac{p - p^*}{p}\right|$$

Let $\text{fl}(x)$ be the floating point representation associate with $x \in \mathbb{R}$. Then $x - \text{fl}(x)$ is roundoff error.

Example 5:

$$\pi = 3.14159265358797\ldots$$

$$= (11.00100100001\ldots)_2$$

1. For the system discussed earlier, with $\beta = 2, n = 4, M = 3$, the representation of π is rounded to

$$\text{fl}(\pi) = (0.1101)_2 \cdot 2^2 = (3.25)_{10}.$$

This is the closest floating point number to π in that system.

2. In reality, with $n = 52$, the roundoff error in $\text{fl}(\pi)$ is approximately $2^{-52} \approx 10^{-15}$.

\[\triangle\]

The numbers that define a floating point system are determined by the hardware and software you use (loosely, your “machine”).

Definition 3. Machine precision. The largest relative gap between floating point numbers is defined as a machine unit, u, and is given by

$$u = \frac{1}{2} \beta^{1-n}.$$

See page 36 for the derivation of this quantity.

2.3.1 Floating point arithmetic

Assumption 4. For all $x \in \mathbb{R}$, there is an ϵ with $|\epsilon| < u$ such that

$$\text{fl}(x) = x(1 + \epsilon).$$

Thus, the difference between any real number and its floating point representation is always less than machine precision, in relative terms, i.e.,

$$|x - \text{fl}(x)| < xu.$$
Definition 5. “Big O” notation. To say that \(f(h) = O(g(h)) \) implies proportionality and a limit. If \(f(h) \) and \(g(h) \) are two functions of \(h \), then

\[
f(h) = O(g(h)) \quad \text{as } h \to 0
\]

implies that there exists a constant \(C \) such that

\[
|f(h)| < C |g(h)| \quad \text{for all } h \text{ sufficiently small.}
\]

The interpretation is that \(f(h) \) decays to zero at least as fast as \(g(h) \) as \(h \to 0 \).

Question 7: How do roundoff errors behave under basic arithmetic operations (addition, subtraction, multiplication, division)?

1. Is \(\text{fl}(x) \cdot \text{fl}(y) = xy(1 + \epsilon) \) for some \(|\epsilon| < u \)?

\[
\text{fl}(x) \cdot \text{fl}(y) = x(1 + \epsilon_x) y(1 + \epsilon_y)
\]

\[
= xy(1 + \epsilon_x + \epsilon_y + \epsilon_x \epsilon_y)
\]

We define \(\epsilon_{xy} = \epsilon_x + \epsilon_y \) and note that since both \(\epsilon_x \) and \(\epsilon_y \) are very small, \(\epsilon_x \epsilon_y \) is much smaller. Thus,

\[
\text{fl}(x) \cdot \text{fl}(y) = xy(1 + \epsilon_{xy}) + O(\epsilon^2) \quad \text{as } \epsilon \to 0.
\]

2. Is \(\text{fl}(x) + \text{fl}(y) = (x + y)(1 + \epsilon) \) for some \(|\epsilon| < u \)?

\[
\text{fl}(x) + \text{fl}(y) = x(1 + \epsilon_x) + y(1 + \epsilon_y)
\]

\[
= x + x \epsilon_x + y + y \epsilon_y
\]

\[
= (x + y) \left(1 + \frac{x \epsilon_x + y \epsilon_y}{x + y}\right)
\]

Beware!

- Although we may assume that \(\epsilon_x \) and \(\epsilon_y \) are small, \(x \epsilon_x \) and \(y \epsilon_y \) might not be.
- Further more, if \(x + y \approx 0 \), the denominator becomes unbounded, and \(\text{fl}(x) + \text{fl}(y) \) may not be close to \(x + y \) at all!

Example 6: Consider a 4 decimal digit floating point system with \(x = 0.1234 \) and \(y = -0.1233 \). Then

\[
x + y = 0.0001 = (0.1000)_{10} \cdot 10^{-3}.
\]

This result has only 1 significant digit. This is known as **cancellation error**.

Example 7: Quadratic formula, page 45.

\[
a x^2 + bx + c = 0 \quad \Rightarrow \quad x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
\]

\[
0.2 x^2 - 47.91 x + 6 = 0 \quad \Rightarrow \quad x = 239.4247, 0.1253 \quad : \text{Matlab}
\]
Now suppose we use 4 decimal digit arithmetic.

\[
x = \frac{47.91 \pm \sqrt{47.91^2 - 4(0.2)^2}}{2(0.2)} = \frac{47.91 \pm \sqrt{2295.48}}{0.4} = \frac{47.91 \pm 2290}{0.4}
\]

\[
= \frac{47.91 \pm 47.85}{0.4} = \begin{cases}
\frac{47.91 + 47.85}{0.4} &= \frac{95.76}{0.4} = 239.4 & : \text{all 4 digits are correct} \\
\frac{47.91 - 47.85}{0.4} &= \frac{0.06}{0.4} = 0.15 & : \text{only 1 digit is correct}
\end{cases}
\]

The problem is due to loss of significance in the subtraction 47.91 − 47.85. One remedy is to use higher precision arithmetic (Matlab), but another option is to reformulate the arithmetic.

\[
x = \frac{-b - \sqrt{b^2 - 4ac}}{2a} \cdot \frac{-b + \sqrt{b^2 - 4ac}}{-b + \sqrt{b^2 - 4ac}} = \frac{b^2 - (b^2 - 4ac)}{b^2 - 4ac} = \frac{2c}{-b + \sqrt{b^2 - 4ac}}
\]

\[
= \frac{2 \cdot 6}{47.91 + 47.85} = \frac{12}{95.76} = 0.1253 & : \text{now all 4 digits are correct}
\]

△

3 Finite differences

Text: section 6.2

Recall: We have discussed roundoff error due to floating point representations and floating point arithmetic—each of these will appear when we use a computer to evaluate a function.

Question 8: How do we evaluate derivatives of functions?

Idea: Start with the definition of a derivative...

\[
f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h},
\]

then approximate for some step size \(h > 0 \)

\[
f'(x) \approx \frac{f(x + h) - f(x)}{h} = D_+ f(x).
\] (2)

Graphically, we are approximating the slope of the tangent line to \(f(x) \) with the slope of the secant line between \(f(x) \) and \(f(x + h) \).

\[
\triangle
\]

\[
\triangle
\]

\[
\triangle
\]
Question 9: How accurate should we expect (2) to be?

Taylor series analysis:

Recall:

\[
 f(x) = f(a) + f'(a)(x-a) + \frac{1}{2} f''(a)(x-a)^2 + \frac{1}{6} f'''(a)(x-a)^3 + \cdots \tag{3}
\]

We write (3) in an equivalent form. Replace \(x \) with \(x + h \) and replace \(a \) with \(x \). Then \(x - a = h \) in (3) and

\[
 f(x + h) = f(x) + f'(x)h + \frac{1}{2} f''(x)h^2 + \frac{1}{6} f'''(x)h^3 + \cdots
\]

Thus, the error in our approximation (2) is proportional to \(h \), since

\[
 f'(x) - \frac{f(x + h) - f(x)}{h} = -\frac{h}{2} f''(x) + O(h^2),
\]

and we say that \(D_+ f(x) \) is a first order approximation of \(f'(x) \), since \(D_+ f(x) = f'(x) + O(h) \).

Thursday, 9/5/13

Example 8: If \(f(x) = e^x \), \(x = 1 \), then \(f'(1) = e = 2.71828 \ldots \) is the exact value.

<table>
<thead>
<tr>
<th>(h)</th>
<th>(D_+ f)</th>
<th>(f'(x) - D_+ f)</th>
<th>((f'(x) - D_+ f)/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>2.8588</td>
<td>-0.1406</td>
<td>-1.4056</td>
</tr>
<tr>
<td>0.05</td>
<td>2.7874</td>
<td>-0.0691</td>
<td>-1.3821</td>
</tr>
<tr>
<td>0.025</td>
<td>2.7525</td>
<td>-0.0343</td>
<td>-1.3705</td>
</tr>
<tr>
<td>0.0125</td>
<td>2.7353</td>
<td>-0.0171</td>
<td>-1.3648</td>
</tr>
<tr>
<td>(\downarrow)</td>
<td>(\downarrow)</td>
<td>(\downarrow)</td>
<td>(\downarrow)</td>
</tr>
<tr>
<td>0</td>
<td>(e)</td>
<td>0</td>
<td>(-\frac{e}{2} = -\frac{1}{2} f''(1))</td>
</tr>
</tbody>
</table>

Beware! In practice something unexpected happens when \(h \) is very small.

```matlab
clear;

%% Forward difference demonstration
exact_value = exp(1);
tic

for j=1:65
    h(j) = 1/2^j;
    computed_value = (exp(1+h(j)) - exp(1))/h(j);
    error(j) = abs(exact_value - computed_value);
end
```
```matlab
figure(1); clf;
plot(h, error, h, error, 'o', 'LineWidth', 2, 'MarkerSize', 12);
set(gca, 'FontSize', 18);
xlabel('step size, h');
ylabel('error');
title('Forward Difference error vs. step size');

figure(2); clf;
loglog(h, error, h, error, 'o', 'LineWidth', 2, 'MarkerSize', 12);
set(gca, 'FontSize', 18);
xlabel('step size, h');
ylabel('error');
title('Forward Difference error vs. step size');
toc

saveas(1, 'fwdDiff_linearPlot.png');
saveas(2, 'fwdDiff_logPlot.png');
```
Note: If error $\approx Ch^p$, then $\log(\text{error}) = \log C + p \log h$, i.e. the slope of the data on a log-log plot gives the order of convergence.

Question 10: Why does error increase for very small h (the left side of the plot)?

- $D_{+}f(x)$ has two sources of error: truncation error due to not using the entire Taylor series, and roundoff error due to finite precision arithmetic.
- Truncation error, we have shown, is $O(h)$, and roundoff error is $O(\epsilon/h)$, where $\epsilon \approx 10^{-15}$ in Matlab.
- The total error is therefore $O(h) + O(\epsilon/h)$, hence for large h (relative to ϵ) truncation error dominates the computation, but for small h, roundoff error is dominant.

Note: Other finite difference approximations of first derivatives are possible, for example,

- Backward difference: $D_{-}f(x) = \frac{f(x) - f(x - h)}{h}$.
- Centered difference: $D_{0}f(x) = \frac{f(x + h) - f(x - h)}{2h}$ (homework).
4 Matlab Intro

basic data type = complex matrix, double precision

- Loops
- preallocation
- the colon operator
- elemental vs. array operations
- transpose
- clear, mod, if, elseif, end