For fastest return, if you are in 211 lab this term.
LAB GSI: _______________________

Problem	Points	Score	GSI
I | 30 | |
II | 26 | |
III | 30 | |
IV | 28 | |
V | 26 | |
Total | 140 | |

Complete Lewis structures are required unless you are given other specific instructions. Precision in drawing counts. Check all three-dimensional representations to ensure you are implying an unequivocal direction of bonding. Do not forget to include important features such as nonbonding electron pairs and formal charges when appropriate. Individual point values are given in the corner of each answer space. The exam has 6 pages in addition to this cover page. A pKa table is on the last page.
I. (30 points)

A. Reaction analysis: provide the requested information in each of the following chemical
transformations. Show all missing starting materials and products unless otherwise
indicated, and if any reaction results in a stereoisomeric mixture, draw one and indicate "+ enantiomer," "+ diastereomer," or "+ more than one stereoisomer" in the box.

(a) (i) $C_{10}H_{16}$

(b) (i)

(c) (i)

(d)

(ii) The product shown forms with (circle the best answer):

- no other stereoisomers
- its enantiomer
- its diastereomer
- with > 2 other stereoisomers

(ii) Major regioisomer only

(ii) Draw the organic products with the info given:

- 1 equiv 1H-NMR: 1 peak
- 2 equiv 1H-NMR: 2 peaks
- 1 equiv 1H-NMR: 1 peak
II. (26 points)

In the following reactions, an optically pure starting material is transformed using slightly different reagents and/or conditions. Predict the product(s) for each transformation, using the information given. Then consider how the changes might affect the rate of that same reaction path.

(a) [Diagrams of reactions]

(i) an optically inactive mixture containing two chiral compounds: C₇H₁₄OS; draw each

(ii) if 1 was changed to [Diagram of reaction]

the reaction rate would (circle the best answer):
- increase
- decrease
- remain the same

(iii) if 1 was changed to [Diagram of reaction]

the reaction rate would (circle the best answer):
- increase
- decrease
- remain the same

(iv) if [Diagrams of reactions]

the reaction rate would (circle the best answer):
- increase
- decrease
- remain the same

(v) if [Diagrams of reactions]

the reaction rate would (circle the best answer):
- increase
- decrease
- remain the same

(b) [Diagrams of reactions]

(i) a single chiral product: C₇H₁₁NO

(ii) if [Diagrams of reactions]

the reaction rate would (circle the best answer):
- increase
- decrease
- remain the same

(iii) if [Diagrams of reactions]

the reaction rate would (circle the best answer):
- increase
- decrease
- remain the same

(iv) if [Diagrams of reactions]

the reaction rate would (circle the best answer):
- increase
- decrease
- remain the same

(v) if [Diagrams of reactions]

the reaction rate would (circle the best answer):
- increase
- decrease
- remain the same
III. (30 points)

A. DBN is a strong, bulky base that is often used to encourage elimination reactions over substitution reactions. In both of the following cases, the resulting bimolecular elimination reaction yields a single major product which can be explained by conformational favorability in the starting material. Draw the product for each and draw the conformation that favors its formation.

(a) Cl

\[
\text{DBN} \quad 1 \text{ equivalent}
\]

(i) Using a chair, draw the conformation that is favored and leads to the product

(ii) Selected product

Draw the conformation appropriately: draw both axial and equatorial positions for each ring atom that has a substituent.

(b) SO\(_3\)Cl

View the C-C bond as indicated

(i) Using a Newman projection, draw the conformation that is favored and leads to the product

(ii) Selected product

B. Complete the following regioselective reactions by drawing the intermediate of highest energy that forms during the reaction (best resonance contributor if applicable), and draw the final product(s) as well. If either the intermediate or the regioselected product(s) forms as a stereoisomeric mixture, draw one and write "+enantiomer" or "+diastereomer" in the box.

(a) HOCl

(i) highest energy intermediate predicted to form

(ii) Final product(s)

(b) H\(_2\)O

(i) highest energy intermediate predicted to form

(ii) Final product(s)
IV. (28 points)

A. Consider the reaction scheme below, and provide the missing information. Note that stereochemistry is not considered here.

(a) [Chemical structures and reactions]

(b) It has been proposed that the addition product forms as a result of several mechanistic steps, including two carbocation shifts. Draw this (the most straightforward) curved arrow mechanism for this transformation. You should choose the appropriate acid/conjugate base pair for any proton transfers, and be sure to regenerate your acid.

(c) The final product shown will form as (circle the best answer):
- a single unique compound
- a racemic mixture
- a diastereomeric mixture
- a mixture of 3 or more stereoisomers

B. The same starting material can be transformed to give a structural isomer of the compound formed above with no evidence of rearrangement. Draw only the connectivity of the organic product (C₉H₁₈O) that forms, and answer the question about how it forms.

1) BH₃
2) H₂O₂/NaOH
3) NaH
4) CH₃I

The final product here will form as (circle the best answer):
- a single unique compound
- a racemic mixture
- a diastereomeric mixture
- a mixture of 3 or more stereoisomers
V. (26 points)

Predict the product(s) in each of the following reactions, using the information given.

(a) If either product forms as a stereoisomeric mixture, draw one and write "+ enantiomer" or "+ diasteromer".

\[
\begin{align*}
\text{NaOCH}_2\text{CH}_3 &+ I_2 \rightarrow \text{OsO}_4 \\
\end{align*}
\]

(b) \[\text{H}_2\text{C}-\text{SOCl} \rightarrow \text{NaBr} \rightarrow \text{SO}_3\text{CH}_3 \rightarrow \text{a single optically active substitution product}\]

(c) \[\text{NaOCH}_2\text{CH}_3 \rightarrow \text{both products have molecular formula } C_{10}H_{12}\]

\[\begin{align*}
\text{13C-NMR: 5 peaks} &+ \text{13C-NMR: 10 peaks} \\
\end{align*}\]

(d) Provide all the missing information for the following transformation. Each reaction should be balanced.

\[\begin{align*}
\text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{Li} &\rightarrow \text{an unknown structure} \rightarrow \text{an unknown structure} \\
\text{+ CH}_3\text{CH}_2\text{CH}_2\text{CH}_3 \\
\end{align*}\]
<table>
<thead>
<tr>
<th>ACID</th>
<th>pK<sub>a</sub></th>
<th>CONJUGATE BASE</th>
<th>ACID</th>
<th>pK<sub>a</sub></th>
<th>CONJUGATE BASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>H – C≡N<sup>+</sup></td>
<td>-12</td>
<td></td>
<td>H – N<sup>+</sup></td>
<td>9.4</td>
<td></td>
</tr>
<tr>
<td>H₂SO₄</td>
<td>-9</td>
<td></td>
<td>H₂SO₄</td>
<td>10.0</td>
<td></td>
</tr>
<tr>
<td>H – I<sup>+</sup></td>
<td>-9</td>
<td></td>
<td>H₂SO₄</td>
<td>10.2</td>
<td></td>
</tr>
<tr>
<td>CH₃CH₂OH</td>
<td>-7.2</td>
<td></td>
<td>CH₃CH₂OH</td>
<td>10.2</td>
<td></td>
</tr>
<tr>
<td>CH₃COOH</td>
<td>-7</td>
<td></td>
<td>CH₃CH₂OH</td>
<td>10.5</td>
<td></td>
</tr>
<tr>
<td>CH₃CH₂OCH₃</td>
<td>-6.4</td>
<td></td>
<td>CH₃CH₂OCH₃</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>CH₃CH₂O⁻</td>
<td>-2.4</td>
<td></td>
<td>CH₃CH₂O⁻</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>CH₃CO⁻</td>
<td>-1.7</td>
<td></td>
<td>CH₃CO⁻</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Cl₃COOH</td>
<td>-1.3</td>
<td></td>
<td>Cl₃COOH</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>H – F⁻</td>
<td>3.2</td>
<td></td>
<td>H – C≡C⁻</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>H₂C=OH</td>
<td>4.2</td>
<td></td>
<td>H₂C=OH</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>H – N⁺</td>
<td>4.6</td>
<td></td>
<td>\text{H – N⁺}</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>CH₃COOH</td>
<td>4.8</td>
<td></td>
<td>\text{H – N⁺}</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>H – N⁺</td>
<td>5.2</td>
<td></td>
<td>\text{H – N⁺}</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>HOCl</td>
<td>6.5</td>
<td></td>
<td>\text{H – N⁺}</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>H – C≡N⁻</td>
<td>9.1</td>
<td></td>
<td>\text{H – C≡N⁻}</td>
<td>(Weakest Acid)</td>
<td></td>
</tr>
<tr>
<td>CH₃CH₂COOH</td>
<td>9.2</td>
<td></td>
<td>\text{H – C≡N⁻}</td>
<td>(Strongest Base)</td>
<td></td>
</tr>
</tbody>
</table>