Predicting the most likely path(s) when SN1, SN2, E1 and E2 are possible...
Consider the questions of **focus** (α-carbon or β-proton) and **timing** in all cases

Bimolecular

Rate = \(k, [\text{electrophile}][\text{nucleophile}] \)

- **Inversion**
- **Substitution**

Note:

- Inversion product only
- Nucleophile is part of final product

Unimolecular

Rate = \(k_r, [\text{electrophile}] \)

- **Inversion**
- **Retention**

Note:

- Inversion and retention product nucleophile is part of final product(s)

And you also must consider both reactants to address the most likely outcome(s)

Note that this does not adequately address the idea of experimental design: choosing a skinny nucleophile/base or creating a specific nucleophile (i.e. by deprotonating an alcohol) means that the goal, or desired product(s), must come from substitution

Nucleophiles

- **Weak**
- **Weak bases**
- **Strong bases but skinny, small**
- **Big, strong**

<table>
<thead>
<tr>
<th>Electrophiles: α-C is</th>
<th>(ROH, H_2O)</th>
<th>(CH_3CN)</th>
<th>(N_3)</th>
<th>(P, S, N)</th>
<th>(C=\text{C}-\text{R})</th>
<th>(OH)</th>
<th>(N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1(^{st}), 0(^{th})</td>
<td>SN?</td>
<td>SN2</td>
<td>SN2</td>
<td>SN2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2(^{nd})</td>
<td>SN1/E1</td>
<td>SN2</td>
<td>SN2/E2</td>
<td>E2/SN2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3(^{rd})</td>
<td>SN1/E1</td>
<td>SN1</td>
<td>E2/SN1</td>
<td>E2/SN1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Resonance? how hindered is it?

- E1 or E2: are there β-H+s to eliminate?

Note that this does not address conditions like solvent (protic solvents speed up unimolecular reaction paths; aprotic solvents speed up bimolecular paths) - weak nucleophiles and/or crowded electrophiles require a protic solvent so a carbocation can form

As the nucleophiles increase in basicity (pKa of conjugate acid \(> 15 \)) and/or size, elimination predominates

- Good
- Bad

Heat can be used to increase elimination products