(1) Suppose that instead of having a free choice of alpha, that the share of risky assets \(s = \alpha / w \) is given exogenously (you don’t have any choice about it). Solve the Merton model for stationary \(s, \mu, \sigma, r \) and the terminal time \(T \). (Note: This is a slight modification of original problem, which allowed the exogenous parameters to be time-varying.)

After fixing \(\alpha = ws \) we solve a restricted Merton model

\[
\tilde{V}(w_0, 0) = \max_c E_0 \int_0^T e^{-\rho t} \frac{c^{1-\gamma}}{1-\gamma} dt
\]

subject to

\[
dw = [rw + ws \mu - c]dt + ws \sigma dz; \ w_0 \ \text{given}
\]

where \(\tilde{V}(w, t) \) is the value function starting at time \(t \) with wealth \(w \). The tilde on \(\tilde{V} \) denotes that the value function is restricted by fixed \(s \). We can write the Bellman equation of this problem as

\[
\rho \tilde{V}(w, t) - \tilde{V}_t(w, t) = \max_c \left\{ \frac{c^{1-\gamma}}{1-\gamma} + \tilde{V}_w(w, t)[rw + ws \mu - c] + \frac{1}{2} \tilde{V}_{ww}(w, t)w^2 s^2 \sigma^2 \right\}.
\]

Note that this problem admits the following scale symmetry:

\[
w \longrightarrow \theta w \\
c \longrightarrow \theta c \\
\tilde{V} \longrightarrow \theta^{1-\gamma} \tilde{V}
\]

where \(\tilde{V} \) is the maximized (restricted) value function. Applying the symmetry theorem we have

\[
\theta^{1-\gamma} \tilde{V}(w, t) = \tilde{V}(\theta w, t),
\]

which implies that

\[
\tilde{V}(w, t) = w^{1-\gamma} \tilde{V}(1, t)
\]

for \(\theta = 1/w \). Differentiation then yields the following identities:
\[\bar{V}_t(w, t) = w^{1-\gamma}\bar{V}_t(1, t),\]
\[\bar{V}_w(w, t) = (1 - \gamma)w^{-\gamma}\bar{V}(1, t), \text{ and} \]
\[\bar{V}_{ww}(w, t) = -\gamma(1 - \gamma)w^{-\gamma-1}\bar{V}(1, t).\]

Substituting back into the Bellman equation above we have
\[
\rho w^{1-\gamma}\bar{V}(1, t) - w^{1-\gamma}\bar{V}_t(1, t) = \max_c \left\{ \frac{c^{1-\gamma}}{1-\gamma} + (1 - \gamma)w^{-\gamma}\bar{V}(1, t)[rw + ws\mu - c] \right. \\
\left. - \frac{1}{2}\gamma(1 - \gamma)w^{-\gamma-1}\bar{V}(1, t)w^2s^2\sigma^2 \right\}.
\]

The first-order condition with respect to \(c\) is

\[c^{-\gamma} = (1 - \gamma)w^{-\gamma}\bar{V}(1, t),\]

which after simplification yields

\[c = A(t)w,\]

where \(A(t) = [(1 - \gamma)\bar{V}(1, t)]^{-1/\gamma}\) is the average propensity to consume at time \(t\). Note that

\[\bar{V}(1, t) = \frac{A(t)^{-\gamma}}{1 - \gamma},\]

so

\[\bar{V}(w, t) = w^{1-\gamma}\frac{A(t)^{-\gamma}}{1 - \gamma}.\]

Differentiation then yields the following identities:

\[\bar{V}_t(w, t) = -\gamma w^{1-\gamma}\frac{A(t)^{-\gamma-1}}{1 - \gamma}A(t),\]
\[\bar{V}_w(w, t) = w^{-\gamma}A(t)^{-\gamma}, \text{ and} \]
\[\bar{V}_{ww}(w, t) = -\gamma w^{-\gamma-1}A(t)^{-\gamma}.\]

Substituting into the Bellman equation above we have

\[
\rho w^{1-\gamma}\frac{A(t)^{-\gamma}}{1 - \gamma} + \gamma w^{1-\gamma}\frac{A(t)^{-\gamma-1}}{1 - \gamma}A(t) = \left[\frac{A(t)w^{1-\gamma}}{1 - \gamma}\right] + w^{-\gamma}A(t)^{-\gamma}[rw + ws\mu - A(t)w] \\
- \frac{1}{2}\gamma w^{-\gamma-1}A(t)^{-\gamma}w^2s^2\sigma^2.
\]
Dividing by \(w^{1-\gamma}A(t)^{-\gamma}/(1 - \gamma) \) on both sides yields

\[
\rho + \gamma \frac{\dot{A}(t)}{A(t)} = A(t) + (1 - \gamma)[r + s\mu - A(t)] - \frac{\gamma(1 - \gamma)}{2}s^2\sigma^2
\]

\[
= \gamma A(t) + (1 - \gamma)\left[r + s\mu - \frac{\gamma}{2}s^2\sigma^2\right],
\]

which after dividing by \(\gamma \) on both sides gives us

\[
\frac{\rho}{\gamma} + \frac{\dot{A}(t)}{A(t)} = A(t) + \left(\frac{1}{\gamma} - 1\right)\left[r + s\mu - \frac{\gamma}{2}s^2\sigma^2\right].
\]

Now note that because the exogenous parameters are time-invariant the original problem admits the following time-shift symmetry:

\[
\begin{align*}
\lambda &
\rightarrow t + \lambda \\
T &
\rightarrow T + \lambda \\
\mu(t) &
\rightarrow \mu(t + \lambda) \\
\sigma(t) &
\rightarrow \sigma(t + \lambda) \\
r(t) &
\rightarrow r(t + \lambda) \\
w(t) &
\rightarrow w(t + \lambda) \\
c(t) &
\rightarrow c(t + \lambda) \\
\tilde{V}(t) &
\rightarrow \tilde{V}(t + \lambda).
\end{align*}
\]

Combining the time-shift symmetry with the scale symmetry from above we have

\[
A(t) = A(t + \lambda)
\]

for all \(\lambda \) since the agent’s same optimal choices are just shifted in time by \(\lambda \). If we let \(\lambda = -t \) then

\[
A(t) = A(0),
\]

which implies that \(\dot{A}(t) = 0 \) so

\[
A = \frac{\rho}{\gamma} + \left(1 - \frac{1}{\gamma}\right)\left[r + s\mu - \frac{\gamma}{2}s^2\sigma^2\right].
\]

(2) Discuss how the solution to (1) can help you understand the solution to the Merton problem in cases of (a) no constraints at all, (b) short-sale constraints, (c) borrowing constraints, and (d) a limitation to only two choices for the share \(s \).

(a) We know from (1) above that
\[\tilde{V}(w, t) = w^{1-\gamma} A(t)^{-\gamma}. \]

Substituting for \(A \) from our solution to (1) we have

\[\tilde{V}(w, t) = \frac{w^{1-\gamma}}{1-\gamma} \left(\frac{\rho}{\gamma} + \left(1 - \frac{1}{\gamma} \right) \left[r + s \mu - \frac{\gamma}{2} s^2 \sigma^2 \right] \right)^{-\gamma}. \]

Now suppose that the agent is given free choice over \(s \). The solution to the Merton problem with no constraints is just

\[V(w, t) = \max_s \tilde{V}(w, t). \]

The optimal \(s \) can be found by solving the following optimization sub-problem:

\[\max_s \left[r + s \mu - \frac{\gamma}{2} s^2 \sigma^2 \right] \]

since \(\tilde{V}(w, t) \) is strictly increasing in \(r + s \mu - \frac{\gamma}{2} s^2 \sigma^2 \) for all \(\gamma \). It can be shown that the resulting two-step solution (i.e., first solving for \(c \) given fixed \(s \) and then optimizing over \(s \)) is identical to the solution to the standard Merton problem.

(b) The same as (a) but add the constraint that \(\alpha \geq 0 \implies ws \geq 0 \).

(c) The same as (a) but add the constraint that \(\alpha + c \leq f(w) + w \implies ws + c \leq f(w) + w \), where \(f(w) \) is the agent’s available credit line conditional on his wealth \(w \).

(d) The same as (a) but now maximize over the constraint set \(s \in \{ s_L, s_H \} \) instead of all \(s \).