Exercise 4: Risk aversion is a concept that is independent of the expected utility model. As an illustration of this, consider the rank-dependent EU model described by equation (1.4). Assume that \(u(z) = z \). Characterize the set of functions \(g(\cdot) \) that make the decision maker risk-averse (see Cohen 1995).

We are considering the lottery \(L = (x_1, p_1; x_2, p_2; \ldots; x_S, p_S) \), with \(x_1 < x_2 < \cdots < x_S \). Equation (1.4) in Gollier reads

\[
U(L) = \sum_{s=1}^{S} u(x_s) \left[g \left(\sum_{t=1}^{s} p_t \right) - g \left(\sum_{t=1}^{s-1} p_t \right) \right] \tag{1}
\]

with \(g(0) = 0 \) and \(g(1) = 1 \).

In our case, we have

\[
U(L) = \sum_{s=1}^{S} x_s \left[g \left(\sum_{t=1}^{s} p_t \right) - g \left(\sum_{t=1}^{s-1} p_t \right) \right] \tag{2}
\]

The expected value of the lottery is

\[
E[L] = \sum_{s=1}^{S} p_s x_s = \mu(L) \tag{3}
\]

which is also equal to the utility of the expected value of the lottery, i.e., \(E[L] = U(E[L]) \). For a risk averse agent, \(U(L) \leq U(E[L]) \). This implies

\[
U(L) - \sum_{s=1}^{S} p_s x_s \leq 0 \tag{4}
\]

The left-hand side is

\[
\sum_{s=1}^{S} x_s \left[g \left(\sum_{t=1}^{s} p_t \right) - g \left(\sum_{t=1}^{s-1} p_t \right) - p_s \right] = \sum_{s=1}^{S} x_s \left[(g \left(\sum_{t=1}^{s} p_t \right) - \sum_{t=1}^{s} p_t) - (g \left(\sum_{t=1}^{s-1} p_t \right) - \sum_{t=1}^{s-1} p_t) \right] \tag{5}
\]
Expanding this sum will be helpful:

\[x_1 [(g(p_1) - p_1) - (g(0) - 0)] + x_2 [(g(p_1 + p_2) - (p_1 + p_2)) - (g(p_1) - (p_1))] + \ldots \\
+ x_S [(g(1) - 1) - (g(p_1 + \cdots + p_{S-1}) - (p_1 + \cdots + p_{S-1}))] \quad (6) \]

Rearranging, we have

\[(x_1 - x_2)(g(p_1) - p_1) + (x_2 - x_3)(g(p_1 + p_2) - (p_1 + p_2)) + \cdots + (x_S - x_S) (g(p_1 + \cdots + p_{S-1}) - (p_1 + \cdots + p_{S-1})) \quad (7)\]

This can be rewritten more compactly as

\[\sum_{s=1}^{S-1} (x_s - x_{s+1}) \left(g \left(\sum_{t=1}^{s} p_t \right) - \sum_{t=1}^{s} p_t \right) \quad (8) \]

Now, since \(x_s < x_{s+1} \) for all \(s \), and the support of \(g(\cdot) \) is \([0, 1]\) with \(g(0) = 0 \) and \(g(1) = 1 \), a sufficient condition for this sum to be nonpositive is for \(g(z) \geq z \) for all \(z \in [0, 1] \) and \(g(0) = 0 \) and \(g(1) = 1 \).\(^1\)

It turns out this condition is also necessary. To see why, consider some function \(g(\cdot) \) that is below \(z \) on some part of the support and above \(z \) on some other part of the support. Recall, the condition had to hold for any arbitrary set of \(x' \)'s such that \(x_s < x_{s+1}, s = 1, \ldots, S - 1 \). Now consider some \(x_{s^*} \) and \(x_{s^*+1} \) such that \((g(p_1 + \cdots + p_{s^*}) - (p_1 + \cdots + p_{s^*})) < 0 \). So

\((x_{s^*} - x_{s^*+1}) (g(p_1 + \cdots + p_{s^*}) - (p_1 + \cdots + p_{s^*})) > 0 \). Since the only restriction on the \(x' \)'s is \(x_s < x_{s+1}, s = 1, \ldots, S - 1 \), if \(x_{s^*+1} - x_{s^*} \) is arbitrarily large, and the the other \((x_{s+1} - x_s) \) are arbitrarily small, the whole summation becomes positive. So, \(g(z) \geq z \) for all \(z \in [0, 1] \) and \(g(0) = 0 \) and \(g(1) = 1 \) is necessary.

We can then write any lottery \(L \) as offering \(\mu(L) \) with certainty plus a mean zero lottery \(\tilde{L} \), where \(\tilde{L} = (x_1 - \mu(L), p_1; x_2 - \mu(L), p_2; \ldots; x_S - \mu(L), p_S) \). We then have

\[U(L) = U(\mu(L) + \tilde{L}) \leq U(\mu(L)) \quad (9) \]

Since \(\tilde{L} \) is a mean zero risk and this inequality holds for all \(\mu(L) \), we have that the agent dislikes all zero-mean risks at all wealth levels, which is Gollier’s definition of a risk averse agent.

\(^1\)Notice, this includes all increasing and concave functions on this support that satisfy the boundary conditions.