Convex functions

- basic properties and examples
- operations that preserve convexity
- quasiconvex functions
- log-concave and log-convex functions

Definition

\(f : \mathbb{R}^n \to \mathbb{R} \) is convex if \(\text{dom} \ f \) is a convex set and

\[
f(\theta x + (1 - \theta)y) \leq \theta f(x) + (1 - \theta)f(y)
\]

for all \(x, y \in \text{dom} \ f, \ 0 \leq \theta \leq 1 \)

- \(f \) is concave if \(-f\) is convex
- \(f \) is strictly convex if \(\text{dom} \ f \) is convex and

\[
f(\theta x + (1 - \theta)y) < \theta f(x) + (1 - \theta)f(y)
\]

for \(x, y \in \text{dom} \ f, \ x \neq y, \ 0 < \theta < 1 \)
Examples on \(\mathbb{R} \)

convex:
- affine: \(ax + b \) on \(\mathbb{R} \), for any \(a, b \in \mathbb{R} \)
- exponential: \(e^{ax} \), for any \(a \in \mathbb{R} \)
- powers: \(x^\alpha \) on \(\mathbb{R}^{++} \), for \(\alpha \geq 1 \) or \(\alpha \leq 0 \)
- powers of absolute value: \(|x|^p \) on \(\mathbb{R} \), for \(p \geq 1 \)
- negative entropy: \(x \log x \) on \(\mathbb{R}^{++} \)

concave:
- affine: \(ax + b \) on \(\mathbb{R} \), for any \(a, b \in \mathbb{R} \)
- powers: \(x^\alpha \) on \(\mathbb{R}^{++} \), for \(0 \leq \alpha \leq 1 \)
- logarithm: \(\log x \) on \(\mathbb{R}^{++} \)

Examples on \(\mathbb{R}^n \) and \(\mathbb{R}^{m \times n} \)

affine functions are convex and concave; all norms are convex

examples on \(\mathbb{R}^n \)
- affine function \(f(x) = a^T x + b \)
- norms: \(\|x\|_p = (\sum_{i=1}^n |x_i|^p)^{1/p} \) for \(p \geq 1 \); \(\|x\|_\infty = \max_k |x_k| \)

examples on \(\mathbb{R}^{m \times n} \) (\(m \times n \) matrices)
- affine function

\[
f(X) = \text{tr}(A^T X) + b = \sum_{i=1}^m \sum_{j=1}^n A_{ij} X_{ij} + b
\]

- spectral (maximum singular value) norm

\[
f(X) = \|X\|_2 = \sigma_{\max}(X) = (\lambda_{\max}(X^T X))^{1/2}
\]
Restriction of a convex function to a line

\[f : \mathbb{R}^n \rightarrow \mathbb{R} \] is convex if and only if the function \(g : \mathbb{R} \rightarrow \mathbb{R} \),

\[g(t) = f(x + tv), \quad \text{dom } g = \{ t \mid x + tv \in \text{dom } f \} \]
is convex (in \(t \)) for any \(x \in \text{dom } f, v \in \mathbb{R}^n \)

So, can check convexity of \(f \) by checking convexity of functions of one variable

dexample. \(f : \mathbb{S}^n \rightarrow \mathbb{R} \) with \(f(X) = \log \det X \), \(\text{dom } f = \mathbb{S}^n_+ \)

\[g(t) = \log \det(X + tv) \]
\[= \log \det X + \log \det(I + tX^{-1/2}VX^{-1/2}) \]
\[= \log \det X + \sum_{i=1}^{n} \log(1 + t\lambda_i) \]

where \(\lambda_i \) are the eigenvalues of \(X^{-1/2}VX^{-1/2} \)

\(g \) is concave in \(t \) (for any choice of \(X > 0, V \)); hence \(f \) is concave

First-order condition

\(f \) is **differentiable** if \(\text{dom } f \) is open and the gradient

\[\nabla f(x) = \left(\frac{\partial f(x)}{\partial x_1}, \frac{\partial f(x)}{\partial x_2}, \ldots, \frac{\partial f(x)}{\partial x_n} \right) \]
exists at each \(x \in \text{dom } f \)

1st-order condition: differentiable \(f \) with convex domain is convex iff

\[f(y) \geq f(x) + \nabla f(x)^T (y - x) \quad \text{for all } x, y \in \text{dom } f \]
(gradient inequality)

first-order approximation of \(f \) is global underestimator
Second-order conditions

f is twice differentiable if $\text{dom } f$ is open and the Hessian $\nabla^2 f(x) \in S^n$,

$$\nabla^2 f(x)_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}, \quad i, j = 1, \ldots, n,$$

exists at each $x \in \text{dom } f$

2nd-order conditions: for twice differentiable f with convex domain

- f is convex if and only if
 $$\nabla^2 f(x) \succeq 0 \quad \text{for all } x \in \text{dom } f$$

- if $\nabla^2 f(x) \succ 0$ for all $x \in \text{dom } f$, then f is strictly convex

Examples

quadratic function: $f(x) = (1/2)x^T P x + q^T x + r$ (with $P \in S^n$)

$$\nabla f(x) = P x + q, \quad \nabla^2 f(x) = P$$

convex iff $P \succeq 0$

least-squares objective: $f(x) = \|Ax - b\|_2^2$

$$\nabla f(x) = 2A^T (Ax - b), \quad \nabla^2 f(x) = 2A^T A$$

convex (for any A)

quadratic-over-linear: $f(x, y) = x^2/y$

$$\nabla^2 f(x, y) = \frac{2}{y^3} \begin{bmatrix} y & -x \\ -x & -x \end{bmatrix} \begin{bmatrix} y \\ -x \end{bmatrix}^T \succeq 0$$

convex for $y > 0$
Examples

log-sum-exp: \(f(x) = \log \sum_{k=1}^{n} \exp x_k \) is convex

\[
\nabla^2 f(x) = \frac{1}{1^T z} \text{diag}(z) - \frac{1}{(1^T z)^2} zz^T \quad (z_k = \exp x_k)
\]

to show \(\nabla^2 f(x) \succeq 0 \), we must verify that \(v^T \nabla^2 f(x)v \geq 0 \) for all \(v \):

\[
v^T \nabla^2 f(x)v = \frac{(\sum_k z_k v_k^2)(\sum_k z_k) - (\sum_k v_k z_k)^2}{(\sum_k z_k)^2} \geq 0
\]

since \((\sum_k v_k z_k)^2 \leq (\sum_k z_k v_k^2)(\sum_k z_k)\) (from Cauchy-Schwarz inequality)

geometric mean: \(f(x) = (\prod_{k=1}^{n} x_k)^{1/n} \) on \(\mathbb{R}^n_{++} \) is concave (similar proof as for log-sum-exp)

Sublevel set and Epigraph

\(\alpha \)-sublevel set of \(f : \mathbb{R}^n \to \mathbb{R} \):

\[
C_\alpha = \{ x \in \text{dom } f \mid f(x) \leq \alpha \}
\]

sublevel sets of convex functions are convex (converse is false)

epigraph of \(f : \mathbb{R}^n \to \mathbb{R} \):

\[
epi f = \{ (x, t) \in \mathbb{R}^{n+1} \mid x \in \text{dom } f, f(x) \leq t \}
\]

\(f \) is convex if and only if \(\text{epi } f \) is a convex set
Jensen’s inequality

basic inequality: if \(f \) is convex, then for \(0 \leq \theta \leq 1 \),

\[
f(\theta x + (1 - \theta)y) \leq \theta f(x) + (1 - \theta)f(y)
\]

extension: if \(f \) is convex, then

\[
f(Ez) \leq Ef(z)
\]

for any random variable \(z \) s.t. \(P(z \in \text{dom } f) = 1 \)

basic inequality is special case with discrete distribution

\[
\text{prob}(z = x) = \theta, \quad \text{prob}(z = y) = 1 - \theta
\]

Operations that preserve convexity

practical methods for establishing convexity of a function: first, show it has convex domain; then,

1. verify definition (often simplified by restricting to a line)
2. for twice differentiable functions, show
 \[
 \nabla^2 f(x) \succeq 0 \quad \forall x \in \text{dom } f
 \]
3. show that \(f \) is obtained from simple convex functions by operations that preserve convexity
 - nonnegative weighted sum
 - composition with affine function
 - pointwise maximum and supremum
 - composition
 - minimization
 - perspective

Proofs that these operations are convexity preserving are often based on analysis of epigraphs and their convexity-preserving transformations
Positive weighted sum & composition with affine function

nonnegative multiple: αf is convex if f is convex, $\alpha \geq 0$

sum: $f_1 + f_2$ convex if f_1, f_2 convex (extends to infinite sums, integrals)

composition with affine function: $f(Ax + b)$ is convex if f is convex

examples
- log barrier for linear inequalities
 \[f(x) = -\sum_{i=1}^{m} \log(b_i - a_i^T x), \quad \text{dom } f = \{ x \mid a_i^T x < b_i, i = 1, \ldots, m \} \]
- (any) norm of affine function: $f(x) = \|Ax + b\|

Pointwise maximum

if f_1, \ldots, f_m are convex, then $f(x) = \max\{f_1(x), \ldots, f_m(x)\}$ is convex

proof: $\text{epi}\max\{f_1(x), \ldots, f_m(x)\} = \bigcap_{i=1}^{m} \text{epi } f_i$

examples
- piecewise-linear function: $f(x) = \max_{i=1,\ldots,m}(a_i^T x + b_i)$ is convex
- sum of r largest components of $x \in \mathbb{R}^n$:
 \[f(x) = x_{[1]} + x_{[2]} + \cdots + x_{[r]} \]
 is convex ($x_{[i]}$ is ith largest component of x)

proof:
\[f(x) = \max\{x_{i_1} + x_{i_2} + \cdots + x_{i_r} \mid 1 \leq i_1 < i_2 < \cdots < i_r \leq n\} \]
Pointwise supremum

if \(f(x, y) \) is convex in \(x \) for each \(y \in A \), then

\[
g(x) = \sup_{y \in A} f(x, y)
\]

is convex

examples

- support function of a set \(C \): \(S_C(x) = \sup_{y \in C} y^T x \) is convex
- distance to farthest point in a set \(C \):
 \[
f(x) = \sup_{y \in C} \|x - y\|
 \]
- maximum eigenvalue of symmetric matrix: for \(X \in S^n \),
 \[
 \lambda_{\max}(X) = \sup_{\|y\|_2=1} y^T X y
 \]

Extended-value extension

extended-value extension of \(f \) is \(\tilde{f} : \mathbb{R}^n \rightarrow \mathbb{R} \cup \{\infty\} \)

\[
\tilde{f}(x) = f(x), \quad x \in \text{dom } f, \quad \tilde{f}(x) = \infty, \quad x \notin \text{dom } f
\]

often simplifies notation; for example, the condition

\[
0 \leq \theta \leq 1 \quad \Rightarrow \quad \tilde{f}(\theta x + (1 - \theta)y) \leq \theta \tilde{f}(x) + (1 - \theta)\tilde{f}(y)
\]

(as an inequality in \(\mathbb{R} \cup \{\infty\} \)), means the same as the two conditions

- \(\text{dom } f \) is convex
- for \(x, y \in \text{dom } f \),

\[
0 \leq \theta \leq 1 \quad \Rightarrow \quad f(\theta x + (1 - \theta)y) \leq \theta f(x) + (1 - \theta)f(y)
\]
Composition with scalar functions

composition of $g : \mathbb{R}^n \rightarrow \mathbb{R}$ and $h : \mathbb{R} \rightarrow \mathbb{R}$:

$$f(x) = h(g(x))$$

f is convex if g convex, h convex, \tilde{h} nondecreasing
g concave, h convex, \tilde{h} nonincreasing

- note: monotonicity must hold for extended-value extension \tilde{h}
- proof (for $n = 1$, twice differentiable g, h defined everywhere)

$$f''(x) = h''(g(x))g'(x)^2 + h'(g(x))g''(x)$$

examples

- $\exp g(x)$ is convex if g is convex
- $1/g(x)$ is convex if g is concave and positive

Vector composition

composition of $g : \mathbb{R}^n \rightarrow \mathbb{R}^k$ and $h : \mathbb{R}^k \rightarrow \mathbb{R}$:

$$f(x) = h(g(x)) = h(g_1(x), g_2(x), \ldots, g_k(x))$$

f is convex if
g_i’s convex, h convex, \tilde{h} nondecreasing in each argument
g_i’s concave, h convex, \tilde{h} nonincreasing in each argument

proof (for $n = 1$, twice differentiable g, h defined everywhere)

$$f''(x) = g'(x)^T \nabla^2 h(g(x))g'(x) + \nabla h(g(x))^T g''(x)$$

examples

- $\sum_{i=1}^m \log g_i(x)$ is concave if g_i are concave and positive
- $\log \sum_{i=1}^m \exp g_i(x)$ is convex if g_i are convex
Minimization

if \(f(x, y) \) is convex in \((x, y)\) and \(C \) is a convex set, then

\[g(x) = \inf_{y \in C} f(x, y) \]

is convex

examples

- \(f(x, y) = x^T Ax + 2x^T By + y^T Cy \) with

\[
\begin{bmatrix}
A & B \\
B^T & C
\end{bmatrix} \succeq 0, \quad C \succ 0
\]

minimizing over \(y \) gives

\[g(x) = \inf_y f(x, y) = x^T (A - BC^{-1}B^T)x \]

\(g \) is convex, hence Schur complement \(A - BC^{-1}B^T \succeq 0 \)

- distance to a set: \(\text{dist}(x, S) = \inf_{y \in S} \|x - y\| \) is convex if \(S \) is convex

Perspective

the **perspective** of a function \(f : \mathbb{R}^n \rightarrow \mathbb{R} \) is the function

\(g : \mathbb{R}^n \times \mathbb{R} \rightarrow \mathbb{R} : \)

\[g(x, t) = tf(x/t), \quad \text{dom } g = \{(x, t) \mid x/t \in \text{dom } f, \ t > 0\} \]

\(g \) is convex if \(f \) is convex

examples

- \(f(x) = x^T x \) is convex on \(\mathbb{R}^n \); hence \(g(x, t) = x^T x/t \) is convex for \(t > 0 \)

- \(f(x) = -\log x \) is convex of \(\mathbb{R}^{++} \); hence relative entropy

\[g(x, t) = t \log t - t \log x \] is convex on \(\mathbb{R}_+^2 \)

- if \(f \) is convex, then

\[g(x) = (c^T x + d)f \left((Ax + b)/(c^T x + d) \right) \]

is convex on \(\{x \mid c^T x + d > 0, \ (Ax + b)/(c^T x + d) \in \text{dom } f\} \)
Quasiconvex functions

\[f : \mathbb{R}^n \to \mathbb{R} \] is quasiconvex if \(\text{dom} f \) is convex and the sublevel sets

\[S_\alpha = \{ x \in \text{dom} f \mid f(x) \leq \alpha \} \]

are convex for all \(\alpha \)

\[\alpha \quad \beta \]

\[a \quad b \quad c \]

- \(f \) is quasiconcave if \(-f\) is quasiconvex
- \(f \) is quasilinear if it is quasiconvex and quasiconcave

Examples

- \(\sqrt{|x|} \) is quasiconvex on \(\mathbb{R} \)
- \(\text{ceil}(x) = \inf \{ z \in \mathbb{Z} \mid z \geq x \} \) is quasilinear
- \(\log x \) is quasilinear on \(\mathbb{R}_{++} \)
- \(f(x_1, x_2) = x_1 x_2 \) is quasiconcave on \(\mathbb{R}_{++}^2 \)
- linear-fractional function

\[f(x) = \frac{a^T x + b}{c^T x + d}, \quad \text{dom} f = \{ x \mid c^T x + d > 0 \} \]

is quasilinear
- distance ratio

\[f(x) = \frac{\|x - a\|_2}{\|x - b\|_2}, \quad \text{dom} f = \{ x \mid \|x - a\|_2 \leq \|x - b\|_2 \} \]

is quasiconvex
Internal rate of return

- cash flow $x = (x_0, \ldots, x_n)$; x_i is payment in period i (to us if $x_i > 0$)
- we assume $x_0 < 0$ and $x_0 + x_1 + \cdots + x_n > 0$
- present value of cash flow x, for interest rate r:
 \[PV(x, r) = \sum_{i=0}^{n} (1 + r)^{-i} x_i \]

- internal rate of return is smallest interest rate for which
 $PV(x, r) = 0$:
 \[IRR(x) = \inf \{ r \geq 0 \mid PV(x, r) = 0 \} \]
 IRR is quasiconcave: superlevel set is intersection of halfspaces
 \[IRR(x) \geq R \iff \sum_{i=0}^{n} (1 + r)^{-i} x_i \geq 0 \text{ for } 0 \leq r \leq R \]

Properties

modified Jensen inequality: for quasiconvex f

\[0 \leq \theta \leq 1 \implies f(\theta x + (1 - \theta)y) \leq \max\{f(x), f(y)\} \]

first-order condition: differentiable f with convex domain is quasiconvex iff

\[f(y) \leq f(x) \implies \nabla f(x)^T (y - x) \leq 0 \]

sums of quasiconvex functions are not necessarily quasiconvex