Economics 676: Macroeconometrics

Lutz Kilian
Winter 2017

Lecture: Monday/Wednesday 10:00AM-11:30AM in Lorch 173
Office hours: Monday 6:00PM
First Day of Class: Wednesday, January 4.
Last Day of Class: Monday, April 17.
Email: lkilian@umich.edu

Requirements:
The course covers topics in time series analysis with an emphasis on applications in macroeconomics. The aim of the course is to equip students with a working knowledge of important econometric techniques used in monetary economics, financial economics, international economics, and econometric theory. Substantial emphasis will be placed on the development of programming skills in MATLAB (a matrix algebra program).

Students taking 676 are required to have completed the first-year Ph.D. sequence in econometrics (Economics 671/672). Ph.D. students taking international finance or advanced macroeconomics are strongly advised to take Economics 676 concurrently. The course is not open to Master students. MAE students should consider Econ 457 instead.

Grading:
Course grades for Economics 676 will be based on a course paper (40%) and regular homework assignments (60%). This may not sound like much, but this course is quite work-intensive and will involve long hours at the computer. If you do not have the time to give this course your full attention, you may want to take the course at some other time. The investment will be worth it once you embark on your thesis.

The problem sets typically consist of programming exercises in the matrix algebra software MATLAB. They may be prepared in groups of up to three students, but must be written up and handed in individually. Everyone is responsible for writing their own code. Please indicate the other group members, as applicable, and include all of the code along with your interpretation of the results. All problem sets must be stapled. Electronic submissions are not acceptable. The problem sets are due in class (or under my door by the end of class) on the due date. There will be no extensions.

All problem sets for this course must be coded in MATLAB. There are no exceptions. One of the aims of this course is to make you proficient in MATLAB programming, so you can tackle new challenges on your own, when you start writing your thesis. MATLAB is used extensively among practitioners and among researchers and is indispensable for your career whether you plan to go to Wall Street, the Federal Reserve Board or a research university. It might not be the only software you will have to master, but it will be the most useful and versatile software.
MATLAB is available on UNIX and on the PCs in the department’s econometrics lab. In addition, the university provides virtual access to MATLAB.

The term project involves identifying an econometric technique for time series that has not been covered in class. You are supposed to write MATLAB code implementing this technique. The code should be well documented and accompanied by a readme.txt file, by a description of how this technique works and what each file accomplishes. Most papers will focus on an empirical application to actual data. The empirical application may replicate some findings in the literature, but it has to be of substantive interest. The empirical analysis should be concisely written and clearly spell out the question of interest and the findings. You may also substitute a methodological question for the empirical application. All topics are subject to my approval.

The course paper should not normally exceed 15-20 pages in length and is due at the end of the course without fail. Electronic submissions are not acceptable. The format of the papers should adhere to the standards required for submission to a journal. Papers that do not meet these standards will not be accepted. Please consult my homepage for examples of acceptable formats. A short, but polished paper is vastly preferred to a longer, but shoddy one. Papers must not be co-authored. The paper is due on April 23 at noon. Please drop them off at my office. There will be no extensions of this deadline.

Readings:
There will be a coursepack for this course (available for purchase at Dollar Bill and online at ctools). You are expected to bring the coursepack to class. The coursepack will form the backbone of this course. In addition, there are selective readings from journal articles on each topic and there are two required textbooks:

Both books are worthwhile having on your shelf, whether you are interested in finance, macroeconomics, international finance or econometrics. Hamilton (1994) is best thought of as a reference book. It is somewhat dated, but still the only graduate-level textbook that covers all aspects of time series econometrics. Lütkepohl’s book is a substantially revised version of his earlier book Introduction to Multiple Time Series Analysis. Rather than cover a wide range of time series methods, it focuses on multivariate time series models only. This includes the vector autoregressive framework which has become the workhorse model of applied time series analysis. For the purpose of this course, either version of this book will do. Lütkepohl’s book is especially useful for this course in that it is very explicit, which facilitates the programming of econometric procedures in a matrix algebra software such as MATLAB. Lütkepohl’s book is also available online through mirlyn. You should nevertheless buy the book in my view. It is a worthwhile investment.

I also will make use of the book:

Chapters may be downloaded from: http://www-personal.umich.edu/~lkilian/book.html

Another good resource is the Handbook of Econometrics, the Handbook of Statistics and the Handbook of Economic Forecasting. The selective list below contains additional textbooks and monographs that you may find useful:

General Books on Macroeconometrics:

Spectral Analysis:

Nonlinear Models:

Unit Roots and Cointegration:

Forecasting:

Applications:

Historical Perspective:

Econometrics Background:

Table of Contents

Part 1: Preliminaries
1. Introduction to MATLAB ... 3
 1.1. MATLAB as a language ... 3
 1.2. Basics ... 3
 1.3. Script Files and Function Files .. 4
 1.4. File Management Inside MATLAB ... 5
 1.5. Variables ... 5
 1.6. Loading and Saving Data .. 7
 1.7. Mathematical Operators .. 8
 1.8. Pausing and Terminating Programs .. 10
 1.9. Using Logical Statements and Writing Loops 10
 1.10. Random Number Generators and Distributions 12
 1.11. Some Useful Functions for Generating Descriptive Statistics 13
 1.12. The Basics of Plotting Data in MATLAB 14
 1.13. Data Sources for Economic Time Series 16
 1.14. Check Your Data .. 18
 1.15. Simple Data Transformations ... 18
 1.16. MATLAB Exercises .. 19
 1.16.1. Random Draws ... 20
 1.16.2. Estimating Distributions of Sample Statistics 21
 1.16.3. Numerical ML Estimation ... 24

Part 2: Univariate Time Series Models
2. Basic Concepts in Time Series Analysis ... 28
 2.1. The Origins of Time Series Econometrics in Business Cycle Theory 29
 2.1.1. Periodic Cycles? .. 29
 2.1.2. Irregular Cycles .. 30
 2.2. Stochastic Processes .. 32
 2.2.1. Stationarity ... 33
 2.2.2. Ergodicity ... 33
 2.3. White Noise ... 34
 2.4. The Wold Representation Theorem ... 34
3. Approximating the Wold Representation .. 35
 3.1. MA(q) Models .. 36
 3.2. AR(p) Models ... 37
 3.3. Impulse Response Functions ... 43
 3.4. ARMA(p,q) Models ... 44
4. Data Transformations .. 47
 4.1. Time-Varying Variances .. 48
 4.2. Time-Varying Means ... 48
 4.2.1. Deterministic Detrending ... 48
 4.2.2. Log-Differencing ... 50
 4.2.3. The Hodrick-Prescott (HP) Filter 53
 4.2.4. Other Forms of Detrending .. 54
 4.3. Seasonality .. 54
 4.3.1. Seasonal Dummies .. 54
 4.3.2. Seasonal Differencing .. 55
 4.3.3. Other Forms of Seasonal Adjustment 55
4.3.4. Seasonality in High-Frequency Financial Data .. 55
4.4. The Danger of Applying the Wrong Transformation to Economic Time Series 56
4.4.1. If there is a unit root, what’s the harm of expressing the model in levels? .. 57
4.4.2. If there is no unit root, what’s the harm of differencing? 61
 5.1. OLS Estimator and Conditional MLE of AR Models 61
 5.2. Numerical MLE of MA and ARMA Models .. 65
6. Nonparametric Analysis of Time Series .. 67
7. Unobserved Components Models .. 69
8. Measuring Volatility .. 71
 8.1. ARCH Models .. 71
 8.2. GARCH Models ... 73
 8.3. The ARCH-in-Mean Model .. 75
 8.4. Other Models of Conditional Heteroskedasticity .. 76
9. Measuring Risk .. 76
 9.1. Forecasting in the Standard GARCH Model ... 76
 9.2. Value at Risk ... 77
 9.3. Other Risk Measures ... 78

Part 3: Multivariate Time Series Models
10. Nonparametric Methods for Multivariate Time Series .. 82
11. Reduced-Form Vector Autoregressions .. 86
 11.1. From Structural to Reduced-Form Models .. 86
 11.2. Cross-Sectional Aggregation of Time Series Models 89
 11.3. Some Useful Vector Operators ... 89
 11.3.1. The vec Operator ... 90
 11.3.2. The vech Operator ... 90
 11.3.3. The Kronecker Product .. 91
 11.3.4. Some Useful Rules for Combining the vec and Kronecker Operators 92
 11.4. Multivariate LS Estimation of Unrestricted VAR Models 92
 11.5. Equation-by-Equation LS Estimation of Unrestricted VAR Models 94
 11.6. The Relationship between Equation-by-Equation LS and Multivariate LS 95
 11.7. Sufficient Conditions for the Consistency and Asymptotic Normality 96
 11.8. Other VAR Estimators .. 96
 11.8.1. Yule-Walker Estimator ... 96
 11.8.2. Burg Estimator .. 96
 11.8.3. Conditional MLE .. 96
 11.9. Estimation of VAR Models Subject to Parameter Constraints 97
 11.9.1. Linear Restrictions on Autoregressive Coefficients 97
 11.9.2. Nonlinear Restrictions on Autoregressive Coefficients 99
 11.9.3. Bayesian VAR Estimation .. 99
 Deriving the Posterior in VAR Models with Gaussian Priors 101
 How to Interpret Posterior Error Bands ... 104
 The Relationship of the Bayesian Estimator with Unrestricted LS 105
 The Minnesota or Litterman Prior (Stationary Case) 105
 Proper and Improper Priors ... 107
 Why there is No Genuine Ignorance Prior .. 108
 What if the Prior is Wrong? ... 109
 Bayesian Model Comparisons .. 109
 12. AR and VAR Lag Order Selection ... 111
 12.1. Specific to General: Tests for Omitted Serial Correlation 111
Tests Based on Covariates ... 224
Tests of the I(0) Null Hypothesis ... 225
25.2.7. Summary of the Literature on Unit Root Tests 226
Testing Economic Theories .. 226
Data Description ... 228
Forecasting ... 228
Pre-Tests for 2nd Stage Inference ... 228
26. Robust Inference in the Presence of Possible Autoregressive Unit Roots ... 229
26.1. Asymptotic Approximations and Near Unit Roots 229
26.2. Confidence Intervals in the Presence of Possible Unit Roots 231
26.3. Other Approaches .. 232
26.4. ARFIMA Models ... 233
27. The Quantitative Importance of Unit Roots 235
27.1. The Beveridge-Nelson Decomposition 235
27.2. The Variance Ratio .. 237
27.3. Other Measures of Persistence 239
27.3.1. Long-Run Impulse Responses 239
27.3.2. Sum of AR Coefficients ... 240
27.3.3. Half-Life ... 240
28. Unit Root Regressions ... 241
28.1. Regressions of I(1) Variables on Deterministic Time Trends 241
28.2. Regressions of one I(1) Variable on an Unrelated I(1) Variable 242
28.3. Regressions of an I(0) Variable on an I(1) Variable 244
29. Cointegration ... 247
29.1. Implications of Cointegration for the Vector MAR 249
29.2. Implications of Cointegration for the VAR Representation 250
29.3. The VEC Representation of Cointegrated VAR Models 252
29.4. Cointegration Tests .. 253
29.4.1. Single-Equation Methods 253
Known Cointegrating Vector ... 253
Unknown Cointegrating Vector ... 253
29.4.2. Systems Methods .. 254
Known Cointegrating Vector ... 254
Unknown Cointegrating Vector ... 254
29.4.3. Other Tests ... 263
29.5. Summary of the Estimation Methods for Cointegrated VAR Models 263
29.6. Pitfalls in Interpreting Estimates of Cointegrating Vectors 264
29.7. Model Selection ... 265
29.8. Identification of Structural Shocks 265
29.9. Cointegrated VAR(\infty) Models 266
29.10. Inference in Possibly Cointegrated VAR Models 266

Part 7: Nonrecursive Structural VAR Models
30. Identification ... 269
30.1. Short-Run Identifying Restrictions 269
30.1.1. Exactly Identified Models 269
30.1.2. Overidentified Models .. 270
30.1.3. Where Do the Restrictions Come From? 270
30.2. Long-Run Identifying Restrictions 271
30.2.1. Overview .. 271
30.2.2. Examples .. 273
30.2.3. Caveats about Long-Run Restrictions ... 275
31. Structural VAR Critiques .. 277
32. Selected Alternative Structural VAR Approaches 278
 32.1. Financial Market Shocks ... 278
 32.2. Identification by Heteroskedasticity ... 279
 32.3. Sign Restrictions ... 279
 32.3.1. Interpretation ... 281
 32.3.2. Extensions ... 282
 32.3.3. Inference .. 282

Part 8: Nonlinear Time Series Models
33. Overview ... 285
 33.1. Nonlinear Dynamics in the Conditional Mean 285
 33.2. Testing Nonlinearities in the Conditional Mean 286
 33.3. Nonlinear Impulse Responses and Forecasts 288
 33.3.1. Estimation of Asymmetric Impulse Responses 288
 33.3.2. Testing for Asymmetric Impulse Responses 290

Appendix 1: Advice on Writing the Research Paper 291

Appendix 2: Examples of Ideas for Paper Topics 293