Economics 671: Econometric Analysis I

Location:
Lectures: MW 8:30-10:00AM in 1449 Mason Hall
Office hours: Monday After class in Lorch 309
Discussion: Tuesday 5:30-7:00PM in 268 Weiser (starting September 11)

Graduate Student Instructor:
Nicolas Idrobo Email: idrobo@umich.edu

Important dates:
First day of class: Monday, September 10
Last day of class: Monday, December 10.
Midterm: TBA
Final exam: Thursday, December 20, 8:00-10:00AM.

There will be no class on Monday, October 15 (Fall break).

Course requirements:
The course covers basic topics in probability theory, descriptive statistics, estimation, and statistical inference, including the classical linear regression model. The aim of the course is to lay the foundations for more advanced econometrics courses such as Economics 672, 675 and 676. Course grades for Economics 671 will be based on one midterm exam (40 percent), a final exam (40 percent) and regular homework assignments (20 percent). Assignments are due by the end of class (or under my office door by the end of class). There will be no extensions for homework assignments. Some assignments involve use of the matrix algebra software MATLAB which is available in the department’s econometrics lab and online through the university. Everyone is responsible for preparing their own problem set solutions. Problems will be graded on a scale of $\sqrt{+}$, $\sqrt{-}$, and F. The University of Michigan standards regarding academic integrity apply.

This course is not appropriate for Master students. In particular, students from the Master programs in Economics and in Public Policy are not allowed to take this course and will be dropped if they attempt to enroll. Please consult your adviser for alternatives. Ph.D. students from fields other than economics or finance should obtain my permission at the beginning of the term, since not everybody will have the prerequisites required for this course. This is a demanding course. Ph.D. students from fields other than economics or finance may wish to consider alternative options, if they are not prepared to put in the effort required to keep up with the material.
Required textbook:

Coursepack:
Includes lecture notes, old exams, problem sets and MATLAB instructions. Available at Dollar Bill (on Church Street) and as a pdf file on ctools. Please bring your copy to class.

Further Background Readings:

Table of Contents

Part 1: Probability Theory
1. Probability ... 2
 1.1. Introductory Concepts .. 2
 1.2. Probability of Events ... 4
 1.3. Conditional Probability and Independent Events 7
 1.4. Bayes Rule ... 10
2. Combinatorial Methods (Counting Techniques) ... 11
 2.1. Binomial Coefficients 14
 2.2. Rules for Binomial Coefficients 14
3. Random Variables .. 15
 3.1. Probability Distributions of Discrete Random Variables 16
 3.2. Probability Distributions for Continuous Random Variables 19
4. Multivariate Distributions .. 22
 4.1. Discrete Random Variables (Bivariate Case) 22
 4.2. Continuous Random Variables (Bivariate Case) 23
 4.3. Some Examples .. 24
 4.4. Marginal Distributions 28
 4.5. Conditional Distributions 30
 4.6. Independence of Random Variables 31
5. Mathematical Expectations ... 32
 5.1. Unconditional Expectations 32
 5.2. Unconditional Expectation of a Function of a Single Random Variable 34
 5.3. Unconditional Expectation of a Function of Several Random Variables 35
6. Moments ... 36
 6.1. Moments of Linear Functions of Random Variables 40
 6.2. Digression: Expectations involving multivariate random variables 41
Part 4: Classical Linear Regression

17. Classical Linear Regression Model: Outline ... 221
18. The Model and its Assumptions .. 222
 18.1. The Linear Regression Model ... 223
 18.1.1. Notation ... 223
 18.1.2. Assumptions ... 223
19. Analysis under Full Ideal Conditions Without Normality 225
 19.1. Ordinary Least Squares Regression .. 225
 19.1.1. Statistical Properties of \(\hat{\beta} \) ... 229
 19.1.2. Statistical Properties of \(\hat{\sigma}^2 \) ... 234
 19.1.3. Asymptotic Distribution of \(\hat{\beta} \) ... 239
 19.1.4. Asymptotic Distribution of \(\hat{\sigma}^2 \) ... 246
 19.1.5. Consistency of the Estimator of the Limiting Variance of \(\sqrt{T}(\hat{\beta} - \beta) \) 247
 19.2. Method-of-Moments Estimation in the Linear Regression Model 247
20. Analysis under Full Ideal Conditions including Normality 249
 20.1. Finite-Sample Properties of the OLS Estimator ... 249
 20.2. Gaussian Maximum Likelihood Estimation .. 251
 20.3. Properties of the Gaussian Maximum Likelihood Estimator 253
 20.3.1. Finite-Sample Properties ... 253
 20.3.2. Asymptotic Properties .. 256
 20.3.2. What Happens with the Gaussian MLE when the True Error is not Gaussian ? .. 258
20.4. Inference in the Classical Linear Regression Model under Normality 259
 20.4.1. Confidence Intervals ... 259
 20.4.2. Hypothesis Testing .. 261
21. Inference in the Classical Linear Regression Model without Normality 262
 21.1. Linear Functions of the OLS Estimator ... 262
 21.2. Nonlinear Functions of the OLS Estimator .. 263
 21.3. LM and LR Tests .. 263
 21.4. The Relationship between the F-Test and the Trinity of Tests 265
 21.5. Some Results for Linear Models with Linear Restrictions 266
 21.6. A Different Motivation for the F-Test ... 266
 21.7. Relationship of \(R^2 \) and F-Test ... 269

Part 5: Problem Sets

Problem Set 1 ... 271
Problem Set 2 ... 277
Problem Set 3 ... 279
Problem Set 4 ... 280
Problem Set 5 ... 283
Problem Set 6 ... 285
Problem Set 7 ... 286
Problem Set 8 ... 292
Problem Set 9 ... 293
Problem Set 10 .. 295