1. a) We are given complex scalar Lagrangian,

\[\mathcal{L} = \partial_\mu \phi^* \partial^\mu \phi - m^2 \phi^* \phi. \]

It is clear that the canonical momenta of the field are

\[\pi = \frac{\partial \mathcal{L}}{\partial (\partial_0 \phi)} = \partial_0 \phi^*; \]
\[\pi^* = \frac{\partial \mathcal{L}}{\partial (\partial_0 \phi^*)} = \partial_0 \phi. \]

The canonical commutation relations are then

\[[\phi(x), \partial_0 \phi^*(y)] = [\phi^*(x), \partial_0 \phi(y)] = i\delta^{(3)}(x - y), \]

with all other combinations commuting. As in Homework 2, the Hamiltonian can be directly computed,

\[H = \int d^3x \mathcal{H} = \int d^3x (\pi \partial_0 \phi - \mathcal{L}), \]
\[= \int d^3x (\pi^* \pi - 1/2 \pi^* \pi + 1/2 \nabla \phi^* \nabla \phi + 1/2 m^2 \phi^* \phi), \]
\[= \frac{1}{2} \int d^3x (\pi^* \pi + \nabla \phi^* \nabla \phi + m^2 \phi^* \phi). \]

We can use this expression for the Hamiltonian to find the Heisenberg equation of motion. We have

\[i\partial_0 \phi(x) = \left[\phi(x), \frac{1}{2} \int d^3y (\pi^*(y)\pi(y) + \nabla \phi^*(y) \nabla \phi(y) + m^2 \phi^*(y) \phi(y)) \right], \]
\[= \frac{1}{2} \int d^3y [\phi(x), \pi(y)] \pi^*(y), \]
\[= \frac{i}{2} \int d^3y \delta^{(3)}(x - y) \pi^*(y), \]
\[= \frac{i}{2} \pi^*(x). \]

Analogously, \(i\partial_0 \phi^*(x) = \frac{i}{2} \pi(x) \). Notice that this derivation used the fact that \(\phi \) commutes with everything in \(\mathcal{H} \) except for \(\pi \). Before we compute the commutator of \(\pi^*(x) \) with the Hamiltonian, we should re-write \(\mathcal{H} \) as PS did so that our conclusion will be more lucid. We have from above that

\[H = \frac{1}{2} \int d^3x (\pi^* \pi + \nabla \phi^* \nabla \phi + m^2 \phi^* \phi). \]

We can evaluate the middle term in \(H \) using Green’s Theorem (essentially integration by parts). We will assume that the surface term vanishes at infinity because the fields must. This allows us to write the Hamiltonian as,

\[H = \frac{1}{2} \int d^3x (\pi^* \pi + \phi^* (-\nabla^2 + m^2) \phi). \]
Because the field is no longer purely real, we cannot assume that the coefficient of ϕ.

I computed the conserved Noether charge in Homework 2 as

$$\int d^3 y (-\nabla^2 + m^2) \phi(y),$$

$$\int d^3 y \phi(y) \phi(x),$$

$$\int d^3 y (-\nabla^2 + m^2) \phi(x).$$

Combining the two results, it is clear that

$$\partial_\mu^2 \phi(x) = (\nabla)^2 - m^2) \phi(x),$$

$$\implies (\partial_\mu \nabla^\mu + m^2) \phi = 0.$$

This is just the Klein-Gordon equation. The result is the same for the complex conjugate field.

b) Because the field is no longer purely real, we cannot assume that the coefficient of $e^{i p \cdot x}$ in the ladder-operator Fourier expansion is the adjoint of the coefficient of $e^{-i p \cdot x}$. Therefore we will use the operator b. The expansion of the fields are then

$$\phi(x^\mu) = \int \frac{d^3 p}{(2\pi)^3} \sqrt{2\omega_p} \left(a_p e^{-i p \cdot x} + b_p^\dagger e^{i p \cdot x} \right);$$

$$\phi^*(x^\mu) = \int \frac{d^3 q}{(2\pi)^3} \sqrt{2\omega_q} \left(a_q^\dagger e^{i q \cdot x} + b_q e^{-i q \cdot x} \right).$$

It is easy to show that these allow us to define π and π^* in terms of a and b operators as well. These become,

$$\pi(x^\mu) = -i \partial_\mu \phi^*(x^\mu) = \int \frac{d^3 q}{(2\pi)^3} i \sqrt{\frac{\omega_q}{2}} \left(a_q^\dagger e^{i q \cdot x} - b_q e^{-i q \cdot x} \right);$$

$$\pi^*(x^\mu) = -i \partial_\mu \phi(x^\mu) = \int \frac{d^3 p}{(2\pi)^3} i \sqrt{\frac{\omega_p}{2}} \left(-a_p e^{-i p \cdot x} + b_p^\dagger e^{i p \cdot x} \right).$$

These allow us to directly demonstrate that

$$[\phi(x^\mu), \pi(y^\mu)] = \int d^3 x d^3 y \left[\left(\frac{\omega_q}{\omega_p} \right) \left([a_p, a_q^\dagger] - [b_p, b_q] \right) \right] e^{-i (p \cdot x - q \cdot y)},$$

$$= i \delta^{(3)}(x - y),$$

while noting that

$$[a_p, a_q^\dagger] = [b_p, b_q^\dagger] = (2\pi)^3 \delta^{(3)}(p - q),$$

and all other terms commute. This implies that there are in fact two entirely different sets of particles with the same mass: those created by b^\dagger and those created by a^\dagger.

c) I computed the conserved Noether charge in Homework 2 as

$$j^\mu = i \left(\phi \partial_\mu \phi^* - \phi^* \partial_\mu \phi \right).$$

We integrate this over all space to see the conserved current in the 0 component. When expressing ϕ and π in terms of ladder operators, we can evaluate this directly.

$$Q = \frac{i}{2} \int d^3 \phi^{\dagger}(x) \pi\phi(x),$$

$$= \frac{i}{2} \int \frac{d^3 x d^3 y d^3 q}{(2\pi)^6} \left(a_p a_q^\dagger e^{i x \cdot (q - p)} - a_p b_q e^{-i x \cdot (p + q) - b_p^\dagger a_q^\dagger e^{i x \cdot (q - p)} - b_p^\dagger b_q e^{-i x \cdot (q - p)} \right) - c.c.,$$

$$= \frac{i}{2} \int \frac{d^3 p d^3 q}{(2\pi)^3} \left(a_p a_q^\dagger \delta^{(3)}(p - q) - a_p b_q \delta^{(3)}(p + q) + b_p^\dagger a_q^\dagger \delta^{(3)}(p + q) - b_p^\dagger b_q \delta^{(3)}(p - q) \right) - c.c.,$$

$$= \frac{i}{2} \int \frac{d^3 p}{(2\pi)^3} \left(a_p a_q^\dagger - a_p b_{-p} + b_p^\dagger a_{-q}^\dagger - b_p^\dagger b_{-q} \right) - c.c.,$$

$$= \frac{i}{2} \int \frac{d^3 p}{(2\pi)^3} \left(a_p a_q^\dagger - b_p^\dagger b_{-p} \right).$$
2. a) We are asked to compute the general, K-type Bessel function solution of the Wightman propagator,

\[D_W(x) \equiv \langle 0 | \phi(x) \phi(0) | 0 \rangle = \int \frac{d^3p}{(2\pi)^3} \frac{1}{2E_p} e^{-ipx}. \]

Because \(x \) is a space-like vector, there exists a reference frame such that \(x^0 = 0 \). This implies that \(x^2 = -x^2 \). And this implies that \(px = -p \cdot x = -|p||x|\cos(\theta) = -|p|\sqrt{-x^2}\cos(\theta) \). We can then write \(D_W(x) \) in polar coordinates as

\[
D_W(x) = \frac{1}{(2\pi)^3} \int_0^{2\pi} d\phi \int_0^\pi e^{i|p|\sqrt{-x^2} \cos(\theta)} \int_0^{\infty} p^2 dp \frac{1}{2\sqrt{p^2 + m^2}}.
\]

\[
= \frac{1}{(2\pi)^3} \int_0^\pi d\theta \ e^{i|p|\sqrt{-x^2} \cos(\theta)} \int_0^{\infty} p^2 dp \frac{1}{2\sqrt{p^2 + m^2}},
\]

(\text{where } \xi = \cos(\theta))

\[
= \frac{1}{4\pi^2} \int_0^{\infty} p^2 dp \frac{1}{\sqrt{p^2 + m^2}} \frac{1}{|p|\sqrt{-x^2}} \left(e^{i|p|\sqrt{-x^2}} - e^{-i|p|\sqrt{-x^2}} \right).
\]

Gradsteyn and Ryzhik’s equation (3.754.2) states that for a K Bessel function,

\[
\int_0^{\infty} dx \frac{\cos(ax)}{\sqrt{\beta^2 + x^2}} = K_0(a\beta).
\]

By differentiating both sides with respect to \(a \), it is shown that

\[
- \int_0^{\infty} dx \frac{a \sin(ax)}{\sqrt{\beta^2 + x^2}} = -\beta K_0'(a\beta) = \beta K_1(a\beta).
\]

We can use this identity to write a more concise equation for \(D_W(x) \). We may conclude

\[
D_W(x) = \frac{m}{4\pi^2 \sqrt{-x^2}} K_1(m \sqrt{-x^2}).
\]

b) We may compute directly,

\[
iD(x) = \langle 0 | [\phi(x), \phi(0)] | 0 \rangle,
\]

\[
= \langle 0 | \phi(x) \phi(0) | 0 \rangle - \langle 0 | \phi(0) \phi(x) | 0 \rangle,
\]

\[
= D_W(x) - D_W(-x),
\]

\[\implies D(x) = i(D_W(-x) - D_W(x)). \]

Similarly,

\[D_1(x) = \langle 0 | [\phi(x), \phi(0)] | 0 \rangle = D_W(x) + D_W(-x). \]

It is clear that both function ‘die off’ very rapidly at large distances. I was not able to conclude that they were truly vanishing, but they are certainly nearly-so at even moderately small distances.