A Continuum Treatment of Coupled Mass Transport and Mechanics in Growing Soft Biological Tissue

2004 MRS Fall Meeting
Boston, MA

November 29th – December 3rd, 2004
Growing Tendon Construct

Controlled experiments motivate and validate the descriptive model

- Growth – an addition/loss of mass
- Increasing collagen concentration with age
Growing Tendon Construct

Controlled experiments motivate and validate the descriptive model

- **Growth** – an addition/loss of mass
 - ... *Increasing collagen concentration with age*
Multiple species interconverting and interacting

- Collagen, proteoglycans, ECF, solutes (sugars, proteins, . . .)
- Change in concentration – *Growth*
- Interactions via momentum and energy transfer

- Introducing fluxes and sources
- Fluid undergoing transport wrt solid (collagen, cells, proteoglycans)
- Solutes diffusing relative to fluid
Arising Issues and Our Current Treatment

Multiple species interconverting and interacting
 ▶ Collagen, proteoglycans, ECF, solutes (sugars, proteins, . . .)
 ▶ Change in concentration – *Growth*
 ▶ Interactions via momentum and energy transfer

This current work involves
 ▶ Introducing fluxes and sources
 ▶ Fluid undergoing transport wrt solid (collagen, cells, proteoglycans)
 ▶ Solute diffusing relative to fluid
Arising Issues and Our Current Treatment

Multiple species interconverting and interacting

- Collagen, proteoglycans, ECF, solutes (sugars, proteins, . . .)
- Change in concentration – *Growth*
- Interactions via momentum and energy transfer

This current work involves

- Introducing fluxes and sources
- Fluid undergoing transport wrt solid (collagen, cells, proteoglycans)
- Solute diffusing relative to fluid

Literature:

- Cowin and Hegedus [1976]
- Kuhl and Steinmann [2002]
- Baaijens et al. [2004]
The Balance of Mass

For collagen: \(\frac{\partial \rho^c_0}{\partial t} = \Pi^c \)

No boundary conditions.
For collagen: \[
\frac{\partial \rho_0^c}{\partial t} = \Pi^c
\]

No boundary conditions.
The Balance of Mass

For the fluid: \[\frac{\partial \rho_f^0}{\partial t} = -\nabla \cdot \mathbf{M}^f \]

Concentration or flux boundary conditions – Tissue exposed to fluid in a bath, fluid injected in at the boundary.
The Balance of Mass

For the fluid: \[\frac{\partial \rho_f}{\partial t} = -\nabla X \cdot M^f \]

Concentration or flux boundary conditions – *Tissue exposed to fluid in a bath, fluid injected in at the boundary*
The Balance of Mass

For a solute: \[
\frac{\partial \rho_s^0}{\partial t} = \Pi^s - \nabla \chi \cdot M^s
\]

Concentration boundary condition – Tissue exposed to solute in solution in a bath
The Balance of Mass

- For a solute: \(\frac{\partial \rho^s_0}{\partial t} = \Pi^s - \nabla \chi \cdot M^s \)

- Concentration boundary condition – *Tissue exposed to solute in solution in a bath*
The Balance of Momentum

For collagen:
\[\rho^c_0 \frac{\partial \mathbf{V}}{\partial t} = \rho^c_0 (\mathbf{g} + \mathbf{q}^c) + \nabla_{\mathbf{x}} \cdot \mathbf{P}^c \]
The Balance of Momentum

- Velocity relative to the solid $\mathbf{V}^f = (1/\rho_0^f)\mathbf{FM}^f$
- For the fluid: $\rho_0^f \frac{\partial}{\partial t} (\mathbf{V} + \mathbf{V}^f) = \rho_0^f (g + q^f) + \nabla \cdot \mathbf{P}^f$
The Balance of Momentum

- Velocity relative to the solid: \(\mathbf{V}^f = (1/\rho_0^f) \mathbf{F} \mathbf{M}^f \)
- For the fluid: \(\rho_0^f \frac{\partial}{\partial t} (\mathbf{V} + \mathbf{V}^f) = \rho_0^f (\mathbf{g} + \mathbf{q}^f) + \nabla \mathbf{x} \cdot \mathbf{P}^f \)
Kinematics of Growth

\[F = \bar{F}^e \tilde{F}^e \tilde{F}^c \]

Residual stress due to \(\tilde{F}^c \)
Kinematics of Growth

\[F = \tilde{F}^e \tilde{e}^c \tilde{F}^g c \]

- Residual stress due to \(\tilde{F}^c \)
Constitutive Relations

- Consistent with the dissipation inequality
- Constitutive hypothesis: \(e^t = \hat{e}^t(F^e_t, \rho^t_0, \eta^t) \)

- Collagen Stress: \(P^c = \rho^c_0 \frac{\partial e^c}{\partial F^{ec}} F^{g^c-T} \)
 - Hyperelastic Material
 - Continuum stored energy function based on the Worm-like chain model

- Fluid Stress: \(P^f = \rho^f_0 \frac{\partial e^f}{\partial F^{ef}} F^{g^f-T} \)
 - Ideal Fluid
 - \(\rho^f_0 \hat{e}^f = \frac{1}{2} \kappa (det(F^{ef}) - 1)^2 \), \(\kappa \) – fluid bulk modulus
Constitutive Relations

- Consistent with the dissipation inequality
- Constitutive hypothesis: \(e^t = \hat{e}^t(F^e, \rho_0^t, \eta^t) \)
- Collagen Stress: \(P^c = \rho_0^c \frac{\partial e^c}{\partial F^ec} F^g c - T \)
 - Hyperelastic Material
 - Continuum stored energy function based on the Worm-like chain model
- Fluid Stress: \(P^f = \rho_0^f \frac{\partial e^f}{\partial F^ef} F^g f - T \)
 - Ideal Fluid
 - \(\rho_0^f \hat{e}^f = \frac{1}{2} \kappa (\text{det}(F^o f) - 1)^2 \), \(\kappa \) - fluid bulk modulus
Constitutive Relations

- Consistent with the dissipation inequality
- Constitutive hypothesis: \(e^l = \hat{e}^l(F^{el}, \rho^l_0, \eta^l) \)
- Collagen Stress: \(P^c = \rho^c_0 \frac{\partial e^c}{\partial F^{ec}} F^{gc} - T \)
 - Hyperelastic Material
 - Continuum stored energy function based on the Worm-like chain model
- Fluid Stress: \(P^f = \rho^f_0 \frac{\partial e^f}{\partial F^{ef}} F^{gf} - T \)
 - Ideal Fluid
 - \(\rho^f_0 \hat{e}^f = \frac{1}{2} \kappa (det(F^{ef}) - 1)^2, \kappa \) – fluid bulk modulus
Constitutive Relations – Worm-like Chain Model for Collagen

\[\tilde{\rho}_0^c \hat{e}^c (F^e, \rho_0^c) \]

\[= \frac{Nk\theta}{4A} \left(\frac{r^2}{2L} + \frac{L}{4(1 - r/L)} - \frac{r}{4} \right) \]

\[- \frac{Nk\theta}{4\sqrt{2L/A}} \left(\sqrt{\frac{2A}{L}} + \frac{1}{4(1 - \sqrt{2A/L})} - \frac{1}{4} \right) \log(\lambda_1^a \lambda_2^b \lambda_3^c) \]

\[+ \frac{\gamma}{\beta} (J^{e\epsilon} - 2\beta - 1) + 2\gamma \mathbf{1}: \mathbf{E}^e \]

- Embed in Arruda-Boyce Eight Chain Model [1993]

\[r = \frac{1}{2} \sqrt{a^2 \lambda_1^e + b^2 \lambda_2^e + c^2 \lambda_3^e} \]

- \(\lambda_i^e \) – elastic stretches along a, b, c

\[\lambda_i^e = \sqrt{\mathbf{N}_i \cdot \mathbf{C}^e \mathbf{N}_i} \]
Constitutive Relations – Fluxes

- Fluid flux relative to collagen
 \[M^f = D^f (\rho_0^f F^T g + F^T \nabla (e^f - \theta \eta^f)) \]

- Solute flux (proteins, sugars, nutrients, ...) relative to fluid
 \[\tilde{V}^s = V^s - V^f \]
 \[\tilde{M}^s = D^s (\nabla (e^s - \theta \eta^s)) \]

- \(D^f \) and \(D^s \) – Positive semi-definite mobility tensors
Constitutive Relations – Fluxes

- Fluid flux relative to collagen
 \[M^f = D^f \left(\rho_0^f F^T g + F^T \nabla_X \cdot P^f - \nabla_X (e^f - \theta \eta^f) \right) \]

- Solute flux (proteins, sugars, nutrients, ...) relative to fluid
 \[\tilde{V}^s = V^s - V^f \]
 \[\tilde{M}^s = D^s \left(-\nabla_X (e^s - \theta \eta^s) \right) \]

- \(D^f \) and \(D^s \) – Positive semi-definite mobility tensors
Constitutive Relations – Fluxes

- Fluid flux relative to collagen
 \[\mathbf{M}^f = D^f \left(\rho_0^f \mathbf{F}^T \mathbf{g} + \mathbf{F}^T \nabla \mathbf{X} \cdot \mathbf{P}^f - \nabla \mathbf{X} (\mathbf{e}^f - \mathbf{\theta} \eta^f) \right) \]

- Solute flux (proteins, sugars, nutrients, ...) relative to fluid
 \[\tilde{\mathbf{V}}^s = \mathbf{V}^s - \mathbf{V}^f \]
 \[\tilde{\mathbf{M}}^s = D^s (-\nabla \mathbf{X} (\mathbf{e}^s - \mathbf{\theta} \eta^s)) \]

- \(D^f \) and \(D^s \) – Positive semi-definite mobility tensors
Coupled Computations – Examples

- Biphasic model
 - worm-like chain model for collagen
 - ideal, nearly incompressible interstitial fluid with bulk compressibility of water
 - fluid mobility $D^f_{ij} = 1 \times 10^{-8} \delta_{ij}$, Han et al. [2000]
 - “Artificial” sources: $\Pi^f = -k^f (\rho^f_0 - \rho^f_{0_{ini}})$, $\Pi^c = -\Pi^f$
 - Entropy of mixing: $\eta^f_{mix} = -\frac{k}{\mathcal{M}^f} \log \frac{\rho^f_0}{\rho_0}$
Coupled Computations – Examples

- Biphasic model
 - worm-like chain model for collagen
 - ideal, nearly incompressible interstitial fluid with bulk compressibility of water
 - fluid mobility $D_{ij}^f = 1 \times 10^{-8} \delta_{ij}$, Han et al. [2000]
 - “Artificial” sources: $\Pi^f = -k^f (\rho_0^f - \rho_{0_{ini}}^f)$, $\Pi^c = -\Pi^f$
 - Entropy of mixing: $\eta_{mix}^f = -\frac{k}{M_f} \log \frac{\rho_0^f}{\rho_0}$
Coupled Computations – Examples

- Biphasic model
 - worm-like chain model for collagen
 - ideal, nearly incompressible interstitial fluid with bulk compressibility of water
 - fluid mobility \(D_{ij}^f = 1 \times 10^{-8} \delta_{ij} \), Han et al. [2000]
- “Artificial” sources: \(\Pi^f = -k_f (\rho_0^f - \rho_{0,ini}^f) \), \(\Pi^c = -\Pi^f \)
- Entropy of mixing: \(\eta_{mix}^f = -\frac{k}{M_f} \log \frac{\rho_0^f}{\rho_0} \)
Coupled Computations – Examples – Constants

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chain density</td>
<td>N</td>
<td>7×10^{21}</td>
<td>m$^{-3}$</td>
</tr>
<tr>
<td>Temperature</td>
<td>θ</td>
<td>310.0</td>
<td>K</td>
</tr>
<tr>
<td>Persistence length</td>
<td>A</td>
<td>1.3775</td>
<td>–</td>
</tr>
<tr>
<td>Fully-stretched length</td>
<td>L</td>
<td>25.277</td>
<td>–</td>
</tr>
<tr>
<td>Unit cell axes</td>
<td>a, b, c</td>
<td>9.3, 12.4, 6.2</td>
<td>–</td>
</tr>
<tr>
<td>Bulk compressibility factors</td>
<td>γ, β</td>
<td>1000, 4.5</td>
<td>–</td>
</tr>
<tr>
<td>Fluid bulk modulus</td>
<td>κ</td>
<td>1</td>
<td>GPa</td>
</tr>
<tr>
<td>Fluid mobility tensor</td>
<td>$D_{ij} = D\delta_{ij}$</td>
<td>1×10^{-8}</td>
<td>m$^{-2}$sec</td>
</tr>
<tr>
<td>Fluid conversion reac. rate</td>
<td>k^f</td>
<td>$-1. \times 10^{-7}$</td>
<td>sec$^{-1}$</td>
</tr>
<tr>
<td>Gravitational acceleration</td>
<td>g</td>
<td>9.81</td>
<td>m.sec$^{-2}$</td>
</tr>
<tr>
<td>Fluid mol. wt.</td>
<td>M^f</td>
<td>2.9885×10^{-23}</td>
<td>kg</td>
</tr>
</tbody>
</table>
Coupled Computations – Examples – Swelling

Before Growth

After Growth

fluid concentration evolution
fluid sink evolution
collagen concentration evolution
Coupled Computations – Examples – Swelling

Cylinder Volume Evolution with Time

- fluid concentration evolution
- fluid sink evolution
- collagen concentration evolution
Coupled Computations – Examples – Swelling

Stress vs Extension Curves

- fluid concentration evolution
- fluid sink evolution
- collagen concentration evolution
Coupled Computations – Examples – Pinching

Before Pinch

After Pinch

- fluid concentration evolution
- fluid sink evolution
- collagen concentration evolution
Summary and Further Work

- Physiologically consistent continuum formulation describing growth in an open system
- Relevant driving forces arise from thermodynamics – coupling with mechanics
- Consistent with mixture theory

- Lattice Boltzmann studies to determine effective transport properties
- Coarse-grained molecular dynamics simulations to investigate the elasticity of collagen fibrils
- Formulated a theoretical framework for the remodelling problem
- Engineering and characterization of growing, functional biological tissue
Summary and Further Work

- Physiologically consistent continuum formulation describing growth in an open system
- Relevant driving forces arise from thermodynamics – coupling with mechanics
- Consistent with mixture theory
- Lattice Boltzmann studies to determine effective transport properties
- Coarse-grained molecular dynamics simulations to investigate the elasticity of collagen fibrils
- Formulated a theoretical framework for the remodelling problem
- Engineering and characterization of growing, functional biological tissue