SocialWatch: Detection of Online Service Abuse via Large-Scale Social Graphs

Junxian Huang1 Yinglian Xie2 Fang Yu2 Qifa Ke2 Martín Abadi2 Eliot Gillum3 Z. Morley Mao1

1University of Michigan 2Microsoft Research Silicon Valley 3Microsoft Corporation

ASIACCS 2013
Malicious accounts in Hotmail
- Attacker-created accounts
- Hijacked accounts
- Attackers are constantly evolving with counter-strategies

The power of social graph
- Capture both local and global graph features
- Hard for attackers to manipulate the overall graph pattern

Challenges
- Hijacked accounts have mixed behaviors
- Incomplete graph – unknown among external accounts
- Large graph scale requires efficient parallel algorithms
Our Contributions

- Detection methodology – local and global social graph features for detection

- Implementation – demonstrate practicality and scalability for large-scale social graphs

- Evaluation – use a real-world data set with large scale and long duration
Social Graph for Hotmail

- **Vertex**
 - Email account

- **Edge**
 - Directed
 - Send/receive emails
 - Undirected
 - Friendship
Social Graph for Hotmail

- **Vertex**
 - Email account (680 million)

- **Edge**
 - Directed (5.7 billion)
 - Send/receive emails
 - Undirected (440 million)
 - Friendship

Sampled Hotmail user accounts from 10/2007 to 04/2010
Intuitions in Leveraging Social Graphs

- Good users send emails to other good users
- Sending emails to bad users is suspicious
- Difficult for bad users to enter good users’ community

Degree and PageRank based detection
Intuitions in Leveraging Social Graphs

- Recipient sets of good users are more connected than those of bad users

Social-affinity based detection
Design of SocialWatch

- Filter inactive accounts
 - Inactive accounts
- Degree/PageRank based detection
 - Attacker-created accounts
- Social-Affinity based detection
 - Hijacked accounts
- Legitimate accounts
Detecting Attacker–created Accounts

- Social features
 - Degree – a local graph feature that captures the sending/receiving behavior of an account
 - PageRank – a global graph feature that calculates the weight of a node on the overall graph

- Detection methods
 - Identify aggressive spamming accounts with high out degrees and low response rates
 - Identify less aggressive spamming accounts using the badness–goodness PageRank ratio
Computing Goodness/Badness PageRank Score

- Goodness score
 - PageRank value in the directed social graph

- Badness score
 - PageRank value in the reversed directed social graph

- Adjust edge weights based on email exchange patterns
 - Propagate more “goodness” to “good” users and more “badness” to “bad” users
Computing Social–Affinity Features

- **Intuition**
 - Recipients of legitimate users tend to have more direct connectivity

- **Recipient connectivity r**
 - The fraction of socially connected recipients
Computing Social–Affinity Features

- Intuition
 - Recipients of legitimate users tend to have closer social distance

- Social distance l
 - The mean of all pairwise social distances between any two users in the recipient set

![Graph showing distribution of social distances for good users and hijacked users](image-url)
Detecting Hijacked Accounts

- Detection *without known* hijacked accounts
 - One-tailed hypothesis testing to detect hijacked accounts
 - Given a significance level, compute a threshold along each feature dimension based on data
 - Classify as hijacked if one of its feature values violates the computed threshold

- Detection *with known* hijacked accounts
 - Use a Bayesian decision framework to detect additional hijacked accounts using with training data
Implementation and Evaluation

- SocialWatch is implemented using DryadLINQ and processes data in parallel on a 240-machine cluster.
- SocialWatch detects 57 million attacker-created accounts, with a 0.8% false detection rate and a 0.6% false negative rate.
- At a false detection rate of 2%, SocialWatch identifies 2 million hijacked accounts, 1.2 million were not detected previously.
Conclusions

- **SocialWatch** is an online service protection framework, that uses **social connectivity** features to detect **attacker-created** accounts and **hijacked** accounts at a large scale.
- SocialWatch is **practically deployable** and **scalable** using parallel algorithms.
Thank you!

Junxian Huang (hjx@umich.edu)