Hypothesis Testing for Personalizing Treatment

Huitian Lei and Susan Murphy

Department of Statistics
University of Michigan

April 12, 2013
Two pre-defined subgroups: subgroup 1 and subgroup 2
Two active treatments: treatment A and treatment B.
The mean treatment response in subgroup \(i \) under treatment \(TR \):
\[\mu_{i,TR}, \text{ where } i \in \{1, 2\}, \; TR \in \{A, B\} \]
Subgroup treatment effects:
\[\theta = (\theta_1, \theta_2), \text{ where } \theta_1 = \mu_{1,A} - \mu_{1,B} \]
and \[\theta_2 = \mu_{2,A} - \mu_{2,B}. \]
[Motivation] Current practice: Testing qualitative interaction

- Gail and Simon (1985): likelihood ratio test of qualitative interaction: $\theta_1 \theta_2 < 0$
- Their hypothesis:

 $$H_{GS} : \theta_1 \theta_2 \geq 0$$

- Qualitative interaction is not the only treatment-subgroup interaction informative in personalizing treatment (e.g, Simon 2002).
 - $\theta_1 \neq 0, \theta_2 = 0$
 - $\theta_1 = 0, \theta_2 \neq 0$

- Mismatch between the test and the scientific goal.
[Motivation] Current practice: Testing subgroup hypotheses separately

- \(H_1 : \theta_1 = 0 \) and \(H_2 : \theta_2 = 0 \)
- \(H_0 : \theta_1 = \theta_2, H_1 : \theta_1 = 0 \) and \(H_2 : \theta_2 = 0 \)
- Usually control the familywise error rate.
- Mismatch between the controlled errors and the scientific goal.
Objectives

- Match the decision procedure and controlled errors with the scientific goal
- Distinguish different types of interaction informative in personalizing treatment
- Same power to detect qualitative interactions as Gail and Simon test
[Procedure] Hypothesis

The hypothesis that the subgroup indicator is not useful for personalizing treatment:

\[H : \theta_1 = \theta_2 = 0, \text{ or } \theta_1 \theta_2 > 0 \]

The complement of \(H \) consists of:

\(\theta_1 \neq 0, \theta_2 = 0 \)
\(\theta_1 = 0, \theta_2 \neq 0 \)
\(\theta_1 \theta_2 < 0 \)
Decision Space

<table>
<thead>
<tr>
<th>Decision</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
</tbody>
</table>

Table: The decision space
Controlled errors over $\theta \in H : \theta_1 = \theta_2 = 0$, or $\theta_1 \theta_2 > 0$

<table>
<thead>
<tr>
<th>Decision 2 $\theta_1 \neq 0, \theta_2 = 0$</th>
<th>Decision 3 $\theta_1 = 0, \theta_2 \neq 0$</th>
<th>Decision 4 $\theta_1 \theta_2 < 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\theta_1 = \theta_2$</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$\theta_1 > \theta_2 > 0$</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>$\theta_2 > \theta_1 > 0$</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$\theta_1 < \theta_2 < 0$</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>$\theta_2 < \theta_1 < 0$</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Table: The controlled errors
[Procedure] Standard test statistics

- Data from two-arm randomized clinical trials
- Assume equal unknown variance

\[T_0 = \frac{\bar{X}_{1A} - \bar{X}_{1B} - \bar{X}_{2A} + \bar{X}_{2B}}{\hat{\sigma}\sqrt{\frac{4}{n_1} + \frac{4}{n_2}}} = \sqrt{p_2} T_1 - \sqrt{p_1} T_2 \] \hspace{1cm} (1)

\[T_1 = \frac{\bar{X}_{1A} - \bar{X}_{1B}}{\hat{\sigma}\sqrt{\frac{4}{n_1}}} \] \hspace{1cm} (2)

\[T_2 = \frac{\bar{X}_{2A} - \bar{X}_{2B}}{\hat{\sigma}\sqrt{\frac{4}{n_2}}} \] \hspace{1cm} (3)
[Procedure] The two-stage decision making procedure

c₀ and c₁ are the critical values in stage I and stage II.

- In stage I, utilize test statistic T₀ and compare it with critical value ±c₀. If T₀ > c₀ or T₀ < −c₀, proceed to stage II. Otherwise if |T₀| ≤ c₀, stop the testing procedure and make decision 1.

- In stage II, utilize test statistics T₁ and T₂ and compare them with critical value ±c₁. Decisions are made according to the decision rule specified in the following table.
[Procedure] The decision rule

<table>
<thead>
<tr>
<th>Decision Rule</th>
<th>Decision</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>T_0</td>
</tr>
<tr>
<td>$</td>
<td>T_0</td>
</tr>
<tr>
<td>$</td>
<td>T_0</td>
</tr>
<tr>
<td>$</td>
<td>T_0</td>
</tr>
<tr>
<td>$T_0 > c_0, T_1 > c_1,</td>
<td>T_2</td>
</tr>
<tr>
<td>$T_0 < -c_0, T_1 < -c_1,</td>
<td>T_2</td>
</tr>
<tr>
<td>$T_0 < -c_0,</td>
<td>T_1</td>
</tr>
<tr>
<td>$T_0 > c_0,</td>
<td>T_1</td>
</tr>
<tr>
<td>$T_0 > c_0, T_1 > c_1, T_2 < -c_1$</td>
<td>4</td>
</tr>
<tr>
<td>$T_0 < -c_0, T_1 < -c_1, T_2 > c_1$</td>
<td>4</td>
</tr>
</tbody>
</table>

Table: The decision Rule
The decision rule

Decision Rule at p=0.5

T1
T2
dec 1
dec 2
dec 3
dec 4

(decision rule)

(University of Michigan)
April 12, 2013 12 / 21
Choose \((c_0, c_1)\) so that the probability of controlled errors for \(\theta \in H\) is at most \(\alpha\).

Fix \(c_1 = z_\alpha\) (Gail and Simon critical value) and vary \(c_0\).

\(p_1\) is the sample proportion of subgroup 1.

<table>
<thead>
<tr>
<th>(p_1)</th>
<th>(c_0)</th>
<th>(c_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10 or 0.90</td>
<td>2.06</td>
<td>1.64</td>
</tr>
<tr>
<td>0.20 or 0.80</td>
<td>2.05</td>
<td>1.64</td>
</tr>
<tr>
<td>0.30 or 0.70</td>
<td>1.96</td>
<td>1.64</td>
</tr>
<tr>
<td>0.40 or 0.60</td>
<td>1.96</td>
<td>1.64</td>
</tr>
<tr>
<td>0.50</td>
<td>1.96</td>
<td>1.64</td>
</tr>
</tbody>
</table>

Table: The critical values at \(\alpha = 0.05\)
Same power to detect qualitative interactions as Gail and Simon test when $0.10 \leq p_1 \leq 0.90$.

p_1, p_2 are the sample proportions of subgroup 1 and subgroup 2.

$$\{(T_1, T_2): \sqrt{p_2}T_1 - \sqrt{p_1}T_2 > c_0, T_1 > c_1, T_2 < -c_1\}$$

$$= \{(T_1, T_2): T_1 > c_1, T_2 < -c_1\}$$

$$\{(T_1, T_2): \sqrt{p_2}T_1 - \sqrt{p_1}T_2 < -c_0, T_1 < -c_1, T_2 > c_1\}$$

$$= \{(T_1, T_2): T_1 < -c_1, T_2 > c_1\}$$
Better power to detect $\theta_1 \neq 0, \theta_2 = 0$ or $\theta_1 = 0, \theta_2 \neq 0$, compared to a likelihood ratio test of $H : \theta_1 = \theta_2 = 0$, or $\theta_1 \theta_2 > 0$.

![Power Comparison Diagram](attachment:power_diagram.png)
[Pros and Cons] Compared to Gail and Simon test

- less powerful to detect qualitative interactions when one subpopulation is rare (e.g., \(p_1 = 0.05 \)).
- Gail and Simon test is d-admissible. The proposed procedure has larger risk over \(H : \theta_1 = \theta_2 = 0 \), or \(\theta_1 \theta_2 > 0 \) in exchange for better power at the complement of \(H \).
[Pros and Cons] Compared to Gail and Simon test

Power of detect qualitative interaction

n = 200, p1 = 0.05
Pros and Cons: Compared to testing subgroup hypotheses separately

- **Pros**: The controlled errors matches the scientific goal.
- **Inflated error probability for testing** $H_1 : \theta_1 = 0$ and $H_2 : \theta_2 = 0$
 - Controlling FWER at 0.05, probability of making decision 2 or 3 may exceed 0.25 when $\theta_1 = \theta_2$
- **Overly conservative error control for testing** $H_0 : \theta_1 = \theta_2$, $H_1 : \theta_1 = 0$ and $H_2 : \theta_2 = 0$.
Thank you.

ehlei@umich.edu
[Back up slides] Total error rate

total error rate, n=200, p1=0.5

(theta1, theta2)
Total error rate

θ_1

θ_2

0.05

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0