Math 452 - Advanced Calculus II

Riemann Integration

1 Volume and the n-dimensional Integral

Definition 1. A closed interval in \mathbb{R}^n is a set $I = I_1 \times I_2 \times \ldots \times I_n$, where $I_j = [a_j, b_j] \subset \mathbb{R}$. The volume of I is $v(I) = (b_1 - a_1)(b_2 - a_2) \cdots (b_n - a_n)$.

Definition 2. A bounded subset A of \mathbb{R}^n is said to be contented if and only if there exists a non-negative real number, denoted $v(A)$, such that for any $\varepsilon > 0$, there exist:

(a) non-overlapping closed intervals $I_1, \ldots, I_p \subset A$ such that

$$\sum_{i=1}^{p} v(I_i) > v(A) - \varepsilon,$$

(b) closed intervals J_1, \ldots, J_q such that

$$A \subset \bigcup_{i=1}^{q} J_i \quad \text{and} \quad \sum_{i=1}^{q} v(J_i) < v(A) + \varepsilon$$

The real number $v(A)$ is called the volume of A.

Definition 3. The contented set A is said to be negligible if and only if $v(A) = 0$. In other words, A is negligible if and only if given $\varepsilon > 0$, there exists a finite collection of intervals $\{J_j\}_{j=1}^{q}$ such that

$$A \subset \bigcup_{j=1}^{q} J_j \quad \text{and} \quad \sum_{j=1}^{q} v(J_j) < \varepsilon$$

Theorem 1. The bounded set A is contented if and only if its boundary is negligible.

Proof. On the blackboard. \qed
Corollary 1. The intersection, union, or difference of two contented sets is contented.

Definition 4. Given a non-negative function $f : \mathbb{R}^n \to \mathbb{R}$, the ordinate set is defined as

$$O_f = \{(x_1, \ldots, x_{n+1}) \in \mathbb{R}^{n+1} : 0 \leq x_{n+1} \leq f(x_1, \ldots, x_n)\}$$

Notice that the ordinate set of a function is bounded only if the function is bounded and has bounded support.

Definition 5. Given $f : \mathbb{R}^n \to \mathbb{R}$, the positive and negative parts f^+ and f^- of f are defined as:

$$f^+(x) = \max\{0, f(x)\} \quad \text{and} \quad f^-(x) = \max\{0, -f(x)\}.$$

In this case, $f = f^+ - f^-$.

Definition 6. A bounded function f with bounded support is said to be integrable if and only if the ordinate sets O_{f^+} and O_{f^-} are both contented. In this case

$$\int f = v(O_{f^+}) - v(O_{f^-}).$$

Definition 7. The characteristic function φ_A of a set A is defined as:

$$\varphi_A(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{otherwise} \end{cases}$$

The integral of a function f over the set A is defined as

$$\int_A f = \int f \varphi_A$$

provided that the product $f \varphi_A$ is integrable.

Lemma 1. If the set A is contented, then

$$\int \varphi_A = v(A)$$
Definition 8. The function f is called admissible if and only if:

(a) f is bounded,

(b) f has bounded support,

(c) f is continuous except on a negligible set.

Theorem 2. Every admissible function is integrable.

Proof. On the blackboard. □

- If $f : A \rightarrow \mathbb{R}$ is continuous and $A \subset \mathbb{R}^n$ is contended, then the graph of f is a negligible set in \mathbb{R}^{n+1}.

- If f is admissible and A is contended, then $f \varphi_A$ is admissible.

- If the admissible function f satisfies $|f(x)| \leq M$ for $x \in A$ with A a contended set in \mathbb{R}^n, then

$$\left| \int_A f \right| \leq M v(A).$$

- If A and B are contended sets with $A \cap B$ negligible, and f is admissible, then

$$\int_{A \cup B} f = \int_A f + \int_B f.$$

- Let A be contended, and suppose the admissible functions f and g agree except on the negligible set D. Then

$$\int_A f = \int_A g.$$
2 Step Functions and Riemann Sums

Definition 9. A function \(h : \mathbb{R}^n \to \mathbb{R} \) is called a \textbf{step function} if and only if \(h \) can be written as a linear combination

\[
h = \sum_{i=1}^{p} a_i \varphi_i
\]

of characteristic functions \(\varphi_1, \ldots, \varphi_p \) of intervals \(I_1, \ldots, I_p \) whose interiors are mutually disjoint.

Theorem 3. If \(h \) is a step function then it is integrable, with

\[
\int h = \sum_{i=1}^{p} a_i v(I_i).
\]

Theorem 4. If \(h \) and \(k \) are step functions and \(c \in \mathbb{R} \), then \(ch \) and \(h + k \) are step functions and

\[
\int (h + k) = \int h + \int k.
\]

Theorem 5. Let \(f : \mathbb{R}^n \to \mathbb{R} \) be a bounded function with bounded support. Then \(f \) is integrable if and only if, given \(\varepsilon > 0 \), there exist step functions \(h \) and \(k \) such that

\[
h \leq f \leq k \quad \text{and} \quad \int (k - h) < \varepsilon,
\]

in which case \(\int h \leq \int f \leq \int k \).

Proof. On the blackboard.

Theorem 6. The set of integrable functions is a vector space. Moreover, for \(f, g \) integrable and \(\alpha, \beta \in \mathbb{R} \):

\[
\int (\alpha f + \beta g) = \alpha \int f + \beta \int g
\]

Proof. On the blackboard.
Recall that a partition of the interval Q is a collection $\mathcal{P} = \{Q_1, \ldots, Q_k\}$ of closed intervals with disjoint interiors such that $Q = \bigcup_{i=1}^{k} Q_i$.

Definition 10. The mesh of a partition \mathcal{P} is the maximum of the diameters of the intervals Q_i in \mathcal{P}. A selection for \mathcal{P} is a set $\mathcal{S} = \{x_1, \ldots, x_k\}$ such that $x_i \in Q_i$ for each i.

Definition 11. For $f : \mathbb{R}^n \to \mathbb{R}$ a function such that $f = 0$ outside of the interval Q, the Riemann sum for f corresponding to the partition \mathcal{P} and selection \mathcal{S} is

$$R(f, \mathcal{P}, \mathcal{S}) = \sum_{i=1}^{k} f(x_i)v(Q_i).$$

Theorem 7. Suppose $f : \mathbb{R}^n \to \mathbb{R}$ is bounded and vanishes outside the interval Q. If f is integrable then, given $\varepsilon > 0$, there exists $\delta > 0$ such that

$$\left| \int f - R(f, \mathcal{P}, \mathcal{S}) \right| < \varepsilon$$

for \mathcal{P} a partition of Q with mesh $< \delta$, and \mathcal{S} a selection of \mathcal{P}.

Proof. On the blackboard.