Definition 1. Let D be a compact set of \mathbb{R}^n. We say that the function $f : D \to \mathbb{R}$ has a local maximum (respectively, local minimum) on D at the point $p \in D$ if and only if there exists an open ball $B \subset D$ centered at p such that $f(x) \leq f(p)$ [respectively, $f(x) \geq f(p)$] for all points $x \in B$.

Recall the well-known result from single-variable calculus that if the differentiable function $f : \mathbb{R} \to \mathbb{R}$ has a local maximum or local minimum at $p \in \mathbb{R}$, then $f'(p) = 0$.

Lemma 1. Let $S \subset \mathbb{R}^n$, and $\varphi : \mathbb{R} \to S$ be a differentiable curve with $\varphi(0) = a$. If f is a differentiable real-valued function defined on some open set containing S, and f has a local maximum (or local minimum) on S at a, then the gradient vector $\nabla f(a)$ is orthogonal to the velocity vector $\varphi'(0)$.

Proof. On the blackboard. \qed

Corollary 1. If U is an open set of \mathbb{R}^n and $a \in U$ is a point at which the differentiable function $f : U \to \mathbb{R}$ has a local maximum or local minimum, then $\nabla f(a) = 0$.

Definition 2. A set $M \subset \mathbb{R}^n$ is said to have a k-dimensional tangent plane at the point $a \in M$ if the union of all tangent lines to differentiable curves on M passing through a is a k-dimensional plane.

Definition 3. The projection mapping $\pi_i : \mathbb{R}^n \to \mathbb{R}^{n-1}$ is defined by removing the ith coordinate:

$$\pi_i(x_1, \ldots, x_n) = (x_1, \ldots, \hat{x}_i, \ldots, x_n) = (x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n) \in \mathbb{R}^{n-1}.$$
1 Single-constraint Optimization

Definition 4. The set $P \subset \mathbb{R}^n$ is called an $(n-1)$-dimensional patch if and only if for some integer i, $1 \leq i \leq n$, there exists a differentiable function $h : U \rightarrow \mathbb{R}$ for $U \subset \mathbb{R}^{n-1}$ open, such that

$$P = \{ x \in \mathbb{R}^n : \pi_i(x) \in U \text{ and } x_i = h(\pi_i(x)) \}.$$

NOTE: The concept of an $(n-1)$-dimensional patch is equivalent to having a permutation x_i^1, \ldots, x_i^n of the coordinates x_1, \ldots, x_n and a differentiable function $h : U \rightarrow \mathbb{R}$ on an open set $U \subset \mathbb{R}^{n-1}$ such that:

$$P = \{ x \in \mathbb{R}^n : (x_i^1, \ldots, x_i^{n-1}) \in U \text{ and } x_i^n = h(x_i^1, \ldots, x_i^{n-1}) \}.$$

Definition 5. The set $M \subset \mathbb{R}^n$ is called an $(n-1)$-dimensional manifold if and only if each point $a \in M$ lies in an open subset $U \subset \mathbb{R}^n$ such that $U \cap M$ is an $(n-1)$-dimensional patch.

Theorem 1. If M is an $(n-1)$-dimensional manifold in \mathbb{R}^n, then at each of its points M has an $(n-1)$-dimensional tangent plane.

Proof. On the blackboard.

Theorem (Implicit Function Theorem). Let $g : \mathbb{R}^n \rightarrow \mathbb{R}$ be continuously differentiable and suppose that $g(a) = 0$ and $D_n g(a) \neq 0$. Then there exists a neighborhood U of a and a differentiable function $f : V \rightarrow \mathbb{R}$, with $V \subset \mathbb{R}^{n-1}$ a neighborhood of (a_1, \ldots, a_{n-1}), such that

$$U \cap g^{-1}(0) = \{ x \in \mathbb{R}^n : (x_1, \ldots, x_{n-1}) \in V \text{ and } x_n = f(x_1, \ldots, x_{n_1}) \}.$$

Theorem 2. Suppose that $g : \mathbb{R}^n \rightarrow \mathbb{R}$ is continuously differentiable. If M is the set of all points $x \in S = g^{-1}(0)$ at which $\nabla g(x) \neq 0$, then M is an $(n-1)$-manifold. Given $a \in M$, the gradient vector $\nabla g(a)$ is orthogonal to the tangent plane to M at a.

Proof. On the blackboard.
Theorem 3. Suppose \(g : \mathbb{R}^n \rightarrow \mathbb{R} \) is continuously differentiable and let \(M \) be the set of points \(x \in \mathbb{R}^n \) at which \(g(x) = 0 \) and \(\nabla g(x) \neq 0 \). If the differentiable function \(f : \mathbb{R}^n \rightarrow \mathbb{R} \) attains a local maximum or minimum on \(M \) at the point \(a \in M \), then
\[
\nabla f(a) = \lambda \nabla g(a)
\]
for some number \(\lambda \), denoted as the Lagrange multiplier.

Proof. On the blackboard. \(\square \)

2 Multiple-constraint Optimization

Definition 6. The set \(P \subset \mathbb{R}^n \) is called a \(k \)-dimensional patch if and only if there exists a permutation \(x_{i_1}, \ldots, x_{i_n} \) of \(x_1, \ldots, x_n \), and differentiable function \(h : U \rightarrow \mathbb{R}^{n-k} \) for \(U \subset \mathbb{R}^k \) open, such that
\[
P = \{ x \in \mathbb{R}^n : (x_{i_1}, \ldots, x_{i_k}) \in U \text{ and } (x_{i_{k+1}}, \ldots, x_{i_n}) = h(x_{i_1}, \ldots, x_{i_k}) \}
\]

Definition 7. The set \(M \subset \mathbb{R}^n \) is called a \(k \)-dimensional manifold if and only if each point \(a \in M \) lies in an open subset \(U \subset \mathbb{R}^n \) such that \(U \cap M \) is a \(k \)-dimensional patch.

Theorem 4. If \(M \) is an \(k \)-dimensional manifold in \(\mathbb{R}^n \) then, at each of its points, \(M \) has a \(k \)-dimensional tangent plane.

Proof. On the blackboard. \(\square \)

Theorem (Implicit Mapping Theorem). Let \(g : \mathbb{R}^n \rightarrow \mathbb{R}^m \) \((m < n) \) be a continuously differentiable map. Suppose that \(g(a) = 0 \) and that the rank of the derivative matrix \(g'(a) \) is \(m \). Then there exists a permutation \(x_{i_1}, \ldots, x_{i_n} \) of the coordinates in \(\mathbb{R}^n \), an open set \(U \subset \mathbb{R}^n \) containing \(a \), an open subset \(V \subset \mathbb{R}^{n-m} \) containing \(b = \pi_{n-m}(a_{i_1}, \ldots, a_{i_n}) \), and a differentiable mapping \(h : V \rightarrow \mathbb{R}^m \) such that each point \(x \in U \) lies on \(S = g^{-1}(0) \) if and only if \((x_{i_1}, \ldots, x_{i_{n-m}}) \in V \) and
\[
(x_{i_{n-m+1}}, \ldots, x_{i_n}) = h(x_{i_1}, \ldots, x_{i_{n-m}}).
\]
Theorem 5. Suppose that \(g : \mathbb{R}^n \rightarrow \mathbb{R}^m \) is continuously differentiable. If \(M \) is the set of all points \(x \in S = g^{-1}(0) \) for which the rank of \(g'(x) \) is \(m \), then \(M \) is an \((n-m)\)-manifold. Given \(a \in M \), the gradient vectors \(\nabla g_1(a), \ldots, \nabla g_m(a) \) are all orthogonal to the tangent plane to \(M \) at \(a \).

Theorem 6. Suppose \(g : \mathbb{R}^n \rightarrow \mathbb{R}^m \) \((m < n)\) is continuously differentiable and let \(M \) be the set of points \(x \in \mathbb{R}^n \) such that \(g(x) = 0 \) and the gradient vectors \(\nabla g_1(a), \ldots, \nabla g_m(a) \) are linearly independent. If the differentiable function \(f : \mathbb{R}^n \rightarrow \mathbb{R} \) attains a local maximum or minimum on \(M \) at the point \(a \in M \), then there exist real numbers \(\lambda_1, \ldots, \lambda_m \) (called Lagrange multipliers) such that:

\[
\nabla f(a) = \lambda_1 \nabla g_1(a) + \ldots + \lambda_m \nabla g_m(a)
\]