HW 2 Solutions:
Section 1.3 problems: Edition 5: 30, 36, 44, 48, 64, 66, 68
Edition 4: 30, 36, 44, 48, 64, 66, 68
Section 2.3 problems: Edition 5: 18, 26 Edition 4: 20, 24

1.
\[x = \begin{pmatrix} 5 \\ 3 \\ -9 \end{pmatrix}, \quad y = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} \]

Since \(Ax = y \), we need a matrix \(A \) which is 3x3. If the matrix is to have rank 1, then the RREF(A) must have two rows of 0's. This means that the second and third rows of \(A \) should be multiples of the first row:

\[A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ \alpha a_{11} & \alpha a_{12} & \alpha a_{13} \\ \beta a_{11} & \beta a_{12} & \beta a_{13} \end{pmatrix} \quad \text{for some } \alpha, \beta \in \mathbb{R} \]

Assuming \(a_{11} \neq 0 \) => RREF(A) =
\[\begin{pmatrix} 1 & \frac{a_{12}}{a_{11}} & \frac{a_{13}}{a_{11}} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \]

From \(Ax = y \) =>

\[a_{11} \cdot 5 + a_{12} \cdot 3 + a_{13} \cdot (-9) = 2 \]
\[\alpha a_{11} \cdot 5 + \alpha a_{12} \cdot 3 + \alpha a_{13} \cdot (-9) = 0 \]

\[\Rightarrow \alpha = 0 \text{ and } \beta = \frac{1}{2} \]

and

\[5a_{11} + 3a_{12} - 9a_{13} = 2 \]

This has infinitely solutions. For example,
\[a_{12} = 1, \quad a_{13} = 1, \quad a_{11} = \frac{8}{5} \]
Check: \[A = \begin{pmatrix} \frac{8}{5} & 4 & 1 \\ 0 & 0 & 0 \\ \frac{4}{5} & \frac{1}{2} & \frac{1}{2} \end{pmatrix}, \quad A \cdot x = \begin{pmatrix} \frac{8}{5} \cdot 5 + 4 \cdot 3 + 1 \cdot (-9) \\ 0 \\ \frac{4}{5} \cdot 5 + \frac{1}{2} \cdot 3 + \frac{1}{2} \cdot (-9) \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix} \]

(2) Using the definition of matrix vector multiplication, we have: \[A \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \\ 7 \end{pmatrix} = \text{first column of } A \]
\[A \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{4}{5} \\ \frac{5}{6} \end{pmatrix} = \text{second column of } A \]
\[A \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{7}{8} \\ \frac{9}{8} \end{pmatrix} = \text{third column of } A \]

\[A = \begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{pmatrix} \]

(3) \[A \text{ is } m \times m, \quad m > n. \]
\[A \cdot x = x_1 \begin{pmatrix} a_{11} \\ a_{m1} \end{pmatrix} + x_2 \begin{pmatrix} a_{12} \\ a_{m2} \end{pmatrix} + \cdots + x_m \begin{pmatrix} a_{1m} \\ a_{mm} \end{pmatrix} \]

We must show there exists \(b \) such that \(A \cdot x \neq b \). That is, \(b \) is not in span of columns of \(A \).

Since \(\text{rank}(A) \leq m < n \Rightarrow \text{RREF}(A) \) must have at least \(n-m \) rows of 0's.
Thus, any \(b \in \mathbb{R}^n \) that gives non-\(RREF \) non-zero entries in the last row, gives an inconsistent problem.

(4) \(A \mathbf{x}_1 = b \)

a) If \(\mathbf{x}_h \) is such that \(A \mathbf{x}_h = 0 \) then:
\[
\mathbf{x}_i + \mathbf{x}_h \text{ satisfies } A(\mathbf{x}_i + \mathbf{x}_h) = A\mathbf{x}_i + A\mathbf{x}_h = b
\]

b) This is as we did in class: \(A(\mathbf{x}_i - \mathbf{x}_2) = A\mathbf{x}_i - A\mathbf{x}_2 = b \)

c) \(A \in \mathbb{R}^{2 \times 2} \)

- Any vector on the line, say \(\mathbf{x}_h \) as shown in red of \(A \mathbf{x}_h = 0 \). Note that \(\mathbb{R}^2 = \text{span} \{ \mathbf{x}_i, \mathbf{x}_h \} \) because any \(\mathbf{u} \in \mathbb{R}^2 \) can be written as \(\mathbf{u} = a_1 \mathbf{x}_i + a_2 \mathbf{x}_2 \)

- To see this, let \(\mathbf{M} = (\mathbf{x}_i, \mathbf{x}_2) = \text{matrix with columns} \mathbf{x}_i, \mathbf{x}_2 \). Look at \(\text{RREF}(\mathbf{M}) \) and see that \(\mathbf{M} \) has rank

Then, if \(\mathbf{x} = \text{solution of } A \mathbf{x} = b \) then write:
\[
\mathbf{x} = a_1 \mathbf{x}_i + a_2 \mathbf{x}_h \text{ because } \mathbf{x} \in \mathbb{R}^2 = \text{span} \{ \mathbf{x}_i, \mathbf{x}_h \}
\]
Ax = α₁Ax₁ + α²Ax₂

All solutions of Ax = b are x₁ + α₂x₂ for all α₂

The set v + c w for c ∈ [0, 1]

is the segment on line parallel to v, passing through w, of length c.

The set for αv + βw = 1 is its parallelogram of sides v, w.

u ∈ ℝ² such that u · v = u · w =>

u · (v - w) = 0 => u is on vectors orthogonal to v - w. => belong to line in ℝ² orthogonal to v - w.
\[A = \begin{pmatrix} 2 & 3 \\ -3 & 2 \end{pmatrix} \] and seek all \(B \) s.t. \(AB = BA \).

Since \(A \) is \(2 \times 2 \) and for product \(AB \) to make sense we need \(B \) to have 2 rows, and for \(BA \) to make sense we need \(B \) to have 2 columns so that \(B \) must be \(2 \times 2 \). We write it as: \(B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} \) and seek \(b_{11}, \ldots, b_{22} \) so that

\[
\begin{pmatrix} 2 & 3 \\ -3 & 2 \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} \begin{pmatrix} 2 & 3 \\ -3 & 2 \end{pmatrix}
\]

Calculating the products:

\[
\begin{pmatrix}
2b_{11} + 3b_{21} & 2b_{12} + 3b_{22} \\
-3b_{11} + 2b_{21} & -3b_{12} + 2b_{22}
\end{pmatrix} =
\begin{pmatrix}
2b_{11} - 3b_{12} & 3b_{11} + 2b_{12} \\
2b_{21} - 3b_{22} & 3b_{21} + 2b_{22}
\end{pmatrix}
\]

Thus, we must have:

\[
\begin{align*}
2b_{11} + 3b_{21} &= 2b_{11} - 3b_{12} & \Rightarrow & \quad b_{21} = -b_{12} \\
2b_{12} + 3b_{22} &= 3b_{11} + 2b_{12} & \Rightarrow & \quad b_{22} = b_{11} \\
-3b_{11} + 2b_{21} &= 2b_{21} - 3b_{22} & \Rightarrow & \quad b_{21} = b_{11} \\
-3b_{12} + 2b_{22} &= 3b_{21} + 2b_{22} & \Rightarrow & \quad b_{12} = -b_{21}
\end{align*}
\]

The matrix \(B \) must be of form:

\[
B = \begin{pmatrix} \alpha & \beta \\ -\beta & \alpha \end{pmatrix}
\] for any \(\alpha \) and \(\beta \).

Note that \(A \) is such a matrix for \(\alpha = 2, \beta = 3 \).
We proceed similarly for $A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{pmatrix}$. Reasoning as before, B must be 3×3, so we seek b_{ij} for $i = 1, 2, 3$ and $j = 1, 2, 3$ so that:

\[
\begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{pmatrix}
\]

Explicitly:

\[
\begin{pmatrix} 2 b_{11} & 3 b_{12} & 4 b_{13} \\ 2 b_{21} & 3 b_{22} & 4 b_{23} \\ 2 b_{31} & 3 b_{32} & 4 b_{33} \end{pmatrix} = \begin{pmatrix} 2 b_{11} & 2 b_{12} & 2 b_{13} \\ 3 b_{21} & 3 b_{22} & 3 b_{23} \\ 4 b_{31} & 4 b_{32} & 4 b_{33} \end{pmatrix}
\]

\Rightarrow must have $b_{ij} = 0$ for $i \neq j$ \Rightarrow B diagonal implies matrices commute with A. Only diagonal matrices commute with A.