Valid measurements of maximum force and power can only be made when excitability has been determined and fibers have been excited maximally. The Rheobase (R_{50}, V/mm) is the minimum stimulus pulse amplitude required to elicit an isometric twitch at half the maximum value ($P_{1/2}$) and Chronaxie (C_{50}, ms) is the pulse duration that elicits $P_{1/2}$, when pulse amplitude is $2R_{50}$. Our hypothesis was that excitability would be lower for engineered muscle constructs, denervated muscles and muscles of neonates than for stimulated-denervated muscles or control muscles in young, adult, or old rodents. The R_{50} and C_{50} were: (1) engineered muscle constructs, 0.85 ± 0.06 & 0.39 ± 0.03; and (2) control (EDL) muscles of neonatal (14 days of age), 0.45 ± 0.03 & 0.86 ± 0.03; young (1 to 5 months of age) and adult (8 to 14 months of age), 0.32 ± 0.02 & 0.04 ± 0.00; and old (28 months of age) 0.56 ± 0.11 & 0.40 ± 0.03 rodents; and (3) EDL muscles of rats denervated for 4 to 7 months without 2.60 ± 0.30 & 0.70 ± 0.15, or with electrical stimulation, 0.47 ± 0.08 & 0.04 ± 0.00; respectively. Excitability is decreased dramatically in engineered muscle constructs and denervated muscles and slightly in muscles of neonatal and old mice and rats. Support: AG10821 & AG06157.