Algebraic topology (Math 592): Problem set 11

Bhargav Bhatt

1. Construct CW structures on, and calculate the CW homology for, the following spaces:
 (a) $\mathbb{R}P^n$.
 (b) $\mathbb{C}P^n$.
 (c) The Klein bottle
 (d) The compact oriented surface Σ_g of genus g.

2. Let X be a CW complex with n-skeleton X^n. Assume $X^0 = \{*\}$. Show that:
 (a) The inclusion $X^1 \to X$ induces a surjection on π_1.
 (b) The inclusion $X^1 \to X$ induces a bijection on π_1 for $i \geq 2$.

3. Let K be a chain complex of vector spaces over a field k. Define $\chi(K) = \sum_i (-1)^i \dim_k(H_i(K))$, viewed as an element in $\mathbb{Z} \cup \{+\infty\}$.
 (a) Assume that K has finite dimensional terms K_i, and that $K_i = 0$ for $i \gg 0$ or $i \ll 0$. Prove that $\chi(K) = \sum_i (-1)^i \dim_k(K_i)$.
 (b) Let $0 \to K \to L \to M \to 0$ be an exact sequence of chain complexes of vector spaces. Show that $\chi(L) = \chi(K) + \chi(M)$.

4. Let K be a chain complex of abelian groups such that each $K_i = \mathbb{Z} \oplus n_i$ for integers n_i, and $n_i = 0$ for $i \gg 0$ or $i \ll 0$. Prove the following:
 $$\sum(-1)^i n_i = \sum(-1)^i \dim_{\mathbb{F}_p} H_i(K/p) = \sum(-1)^i \dim_{\mathbb{Q}} H_i(K \otimes \mathbb{Q}).$$

5. Let X be a finite CW complex, and let s_n be the number of n-cells in X. Prove the following formula:
 $$\sum(-1)^i s_i = \sum(-1)^i \dim_{\mathbb{F}_p} H_i(X, \mathbb{F}_p) = \sum(-1)^i \dim_{\mathbb{Q}} H_i(X, \mathbb{Q}).$$
 In particular, the quantity on the left does not depend on the CW structure of X; it is called the Euler-Characteristic $\chi(X)$ of X.

6. Let $\pi : Y \to X$ be a covering space of degree d with X and Y are slsc path-connected spaces.
 (a) For any $n \geq 0$, show that the map $\text{Map}(\Delta^n, Y) \to \text{Map}(\Delta^n, X)$ induced by composing with π is surjective, and that the fibre over any element of $\text{Map}(\Delta^n, X)$ has exactly d elements.
 (b) Define a map $C_n(X) \to C_n(Y)$ of abelian groups by sending a simplex $\sigma \in \text{Map}(\Delta^n, X)$ to the sum of its preimages in $\text{Map}(\Delta^n, Y) \subset C_n(Y)$. Show that this defines a map $\pi^* : C_*(X) \to C_*(Y)$ of chain complexes such that $\pi_* \circ \pi^*$ is multiplication by d.
 (c) Generalize the construction of π^* to $C_*(\cdot, k)$ for any ring k. Conclude that the induced map $\pi_* : H_i(Y, k) \to H_i(X, k)$ is surjective if d is invertible on k.
 (d) Give an example of a map π as above such that $H_i(Y, \mathbb{Z}/2) \to H_i(X, \mathbb{Z}/2)$ is not surjective.
 (e) Give an example of a covering space $f : Z \to W$ of slsc path-connected spaces (necessarily of infinite degree) such that $f_* : H_i(Y, \mathbb{Q}) \to H_i(X, \mathbb{Q})$ is not surjective.