1. Background on K3 Surfaces

Definition 1.1. A K3 surface over a field \(k \) is a smooth, projective, geometrically integral surface \(X \) such that \(H^1(X, \mathcal{O}_X) = 0 \) and \(K_X \cong \mathcal{O}_X \) (trivial canonical bundle).

Over \(\mathbb{C} \), we can think of simply connected surfaces having a global non-vanishing holomorphic 2-form.

1.1. Examples.

1. Smooth quartic surface in \(\mathbb{P}^3 \) (\(K_{\mathbb{P}^3} \cong \mathcal{O}_{\mathbb{P}^3}(-4) \) and then adjunction formula). If A,D,E singularities, blow up is a K3 surface.

2. Smooth complete intersections of a quadric and cubic in \(\mathbb{P}^4 \).

3. Smooth complete intersections of three quadrics in \(\mathbb{P}^5 \).

4. Smooth zero-locus of a \((2,2,2)\) form on \(\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1 \).

5. Double cover of \(\mathbb{P}^2 \) branched along a smooth sextic.

1.2. Cohomology of K3 surfaces. Since \(H^1(X, \mathbb{Z}) = 0 \), we have to look at second cohomology. Turns out that \(H^2(X, \mathbb{Z}) \) is torsion free and is a free abelian group of rank 22 (by using Noether’s formula). \((b_0 = 1, b_4 = 1) \) \(H^2(X, \mathbb{Z}) \) has a cup-product grading and is therefore a lattice and it turns out to be even (Wu’s formula). The matrix of this pairing has determinant \(\pm 1 \) by Poincare duality and signature \((3,19)\) by Hirzebruch’s index formula. Milnor tells us that \(H^2(X, \mathbb{Z}) \cong E_8(-1)^2 \oplus U^3 = II_{3,19} \).

We have \(H^2(X, \mathbb{Z}) \otimes \mathbb{C} \cong H^{2,0} \oplus H^{0,2} \oplus H^{1,1} \). Consider the exponential exact sequence

\[
0 \rightarrow \mathbb{Z} \rightarrow \mathcal{O}_X \rightarrow \mathcal{O}_X^\times \rightarrow 0
\]

and take the long exact sequence of cohomology. We have that the Chern class map \(H^1(X, \mathcal{O}_X^\times) := \text{Pic}(X) \hookrightarrow H^2(X, \mathbb{Z}) \); so linear equivalence is equivalent to algebraic equivalence. So \(\text{Pic}(X) \cong \text{NS}(X) \) is the Neron-Severi lattice and is a sublattice of \(H^2(X, \mathbb{Z}) \) contained in \(H^{1,1}(X, \mathbb{Z}) \cap H^2(X, \mathbb{Z}) \) having rank \(\rho \leq 20 \) and signature \((1, \rho, -1)\) (Hodge-index thm). It’s also primitive in \(H^2(X, \mathbb{Z}) \) and its quotient \(H^2(X, \mathbb{Z})/\text{Pic}(X) \) equals \(H^{1,1}(X, \mathbb{Z}) \cap H^2(X, \mathbb{Z}) \). The transcendental lattice \(T_X \) is the orthogonal complement of the algebraic divisors inside the cohomology.
Let \(H^{1,1}(X, \mathbb{R}) = \{ x \in H^2(X, \mathbb{R}) : \langle x, \omega_X \rangle = 0 \} \). The form \(\langle , \rangle \) has signature \((1,19)\) on \(H^{1,1}(X, \mathbb{R}) \) and \(\{ x \in H^{1,1}(X, \mathbb{R}) : \langle x, x \rangle > 0 \} \) has 2 connected components and exactly one of these contains ample divisors (or Kahler classes). Call this the positive cone.

Theorem 1.1 (Torelli). Let \(X \) and \(X' \) be K3 surfaces and suppose we’re given an isometry \(\eta : H^2(X, \mathbb{Z}) \rightarrow H^2(X, \mathbb{Z}) \) which sends \(H^2,0(X, \mathbb{C}) \) to \(H^2,0(X', \mathbb{C}) \) and also sends the positive cone of \(X' \) to the positive cone of \(X \) and finally we need that it sends effective disors to effective divisors. Then \(\eta = \phi^* \) for a unique isomorphism \(\phi : X \rightarrow X' \).

We have a period mapping from marked K3 surfaces \((X, \phi)\) where \(\phi \) is a marking from \(H^2(X, \mathbb{Z}) \) to a fixed lattice \(\Lambda \), to \(\Omega = \{ \omega \in \Lambda \otimes \mathbb{C} : \langle \omega, \omega \rangle > 0 \}/\mathbb{C}^\times \) given by taking \((X, \phi)\) to \(\phi(\omega_X) \). Note that if \(\Omega \) is an open subset of a quadric in \(\mathbb{P}^{21} \) and if the K3 surface is algebraic, say \(z \in \Lambda \) such that \(z^2 > 0 \) and looking at moduli space of K3 surfaces \((X, \phi)\) such that \(\phi^{-1}(z) \) is the class of an ample line bundle on \(X \), the image of the period map lies inside \(\Omega_z = \{ \omega \in \Omega : \langle \omega, z \rangle = 0 \} \) and this thing is 19-dimensional.

Original Torelli theorem about algebraic K3 surfaces (Piatettski-Shapiro-Shafarevich) showed that the period map was injective and Kulikov showed surjectivity for algebraic K3 surfaces. Burns and Rapoport showed Torelli for arbitrary K3 surfaces and Todorov showed surjectivity.

1.3. Lattice polarized K3 surfaces (Nikodim).

Suppose that \(M \in \Lambda \) is some primitive sublattice of signature \((1, x)\), we can look at marked K3 surfaces \((X, \phi)\) such that \(\phi^{-1}(M) \) is contained in the \(NS(X) \). Let \(N = M^\perp \) in \(\Lambda \) and
\[
\Omega_M = \{ \omega \in N \otimes \mathbb{C} : \langle \omega, \omega \rangle = 0, \langle \omega, \overline{\omega} \rangle > 0 \}/\mathbb{C}^\times
\]
and it turns out that this thing is two copies of a Hermitian symmetric domain. Let
\[
\Gamma(M) = \{ \sigma \in O(\Lambda) : \sigma \text{ fixes } M \text{ pointwise} \}
\]
and let \(\Gamma_M \) be the image of \(\Gamma(M) \) in \(O(N) \) and then get an isomorphism
\[
\{ \text{pseudo-ample } M\text{-polarized K3 surfaces} \} \cong \Gamma_M \backslash \Omega_M
\]
which is an honest-to-god quasi-projective variety.

If \(M \) has a unique embedding in \(\Lambda \) upto automorphisms of \(\Lambda \), then refer to the moduli space of \(M \)-polarized K3 surfaces without fixing a specific embedding in \(\Lambda \). Note that the dimension of the moduli space is \(20 - \text{rank}(M) \).

Easy to give a complex:description of this, but hard to give an algebraic description of this moduli space.

1.4. Elliptic Fibrations.

If a K3 surface \(X \) has an elliptic fibration of genus 1 from \(X \rightarrow \mathbb{P}^1 \), the fiber class \(F \) has \(F^2 = 0 \). Conversely if we have a primitive nef divisor having self-intersection zero, it gives a genus 1 fibration. Those with section correspond to embeddings of \(U \) in \(NS(X) \) and when these have reducible singular fibers, the nonidentity components give contributions to the Neron-Severi group and in particular we have the Shimura-Tate formula which tells us that
\[
\rho = 2 + \text{MW rank} + \sum (\text{No. of components} - 1)
\]
2. Orbit parametrization, generalizations of cubes involving K3 surfaces

2.1. Rubik’s revenge. We look at $4 \times 4 \times 4$ cube with entries in k. Taking a bijection of slices in one direction, we get a 4×4 matrix of linear forms in variables and its determinant is a quartic form in 4 variables and so it determines a quartic surface in \mathbb{P}^3. Generically, we get a smooth K3 surface X. Slices in other directions give us K3 surfaces Y, Z. These are isomorphic, we can think of the cube as a form on $V_1 \times V_2 \times V_3$ where V_i is 4-dimensional complex vector spaces. The K3 surfaces are defined $A(x,..,z)$ being singular etc. (cf. Wei Ho’s talk) and if $x \in X$ we have $A(x,..,z)$ is singular and taking kernel in y direction gives us y such that $A(x,y,z) = 0$ and this implies that $y \in Y$ and we get ϕ_{XY} and similarly get maps ϕ_{YZ} and ϕ_{ZX}, but the composition of these maps is not the identity and gives us a $K3$ surface with a genuine nontrivial automorphism.

Let’s analyze $NS(X)$. Have the hyperplane class $\mathcal{O}_{\mathbb{P}^3}(1)|_X$ and have things on Y, Z which are hyperplane classes and can pull them back to X and so we get three effective divisors D_X, D_Y, D_Z on X in $NS(X)$. If we look at the top 3×3 minor of $A(x,..,z)$ we get one coordinate of ϕ_{XY} as well as ϕ_{XZ} i.e. vanishing of this 3×3 minor should contain D_Y, D_Z as well. Upshot of this turns out to be $3D_X = D_Y + D_Z$. We know that $D_X^2 = D_Y^2 = D_Z^2 = 4$ and so we deduce $D_Y \cdot D_Z = 14$. So deduce $D_X, D_Z = D_X \cdot D_Y = 6$ and so $NS(X)$ contains the lattice with form $\langle 4, 6, 6, 4 \rangle$ which has discriminant -20 and rank 2. Notice that the dimension of the moduli space of $4 \times 4 \times 4$ cubes is $4^3 - 3(4^3 - 1) - 1 = 18$ and so the rank of $NS(X)$ is 2.

Now we show that we can reverse this process. So $NS(X)$ is either $ZD_X + ZD_Y$ or is sublattice of index 2 (this can’t happen!), and so D_Y gives you a genus 3 curve embedding into \mathbb{P}^2 by a linear system of degree 6 (since $D_X D_Y = 6$). To find the cube given D_Y, D_X look at $H^0(X, D_X) \otimes H^0(D, D_Y) \to H^0(D_Z \otimes \mathbb{C})$. If surjective, kernel has dimension 4 if this is surjective and we get four 4×4 matrices and this gives us the $4 \times 4 \times 4$ cube.

Theorem 2.1. Let V, V', V'' be 4-dimensional spaces over some field – then the non-degenerate orbits of $\mathbb{G}_m \times SL(V) \times SL(V') \times SL(V'')$ are in bijection with isomorphism classes of (X, L) where X is a smooth quartic surface in \mathbb{P}^3_k and L is a line bundle defined over k with $L^2 = 4$ and $LH = 6$ where H is hyperplane of $X \subset \mathbb{P}^3$ and these are the k-points of moduli space of K3 surfaces of lattice polarized $\langle 4, 6, 6, 4 \rangle$.

Automorphism of going around acts on N-S by the matrix $\begin{pmatrix} -3 & -8 \\ 8 & 21 \end{pmatrix}$ and can show that it generically generates the automorphism group of a K3 surface.

2.2. $2 \times 2 \times 2 \times 4$ boxes. Let C be such a one with entries in k. We consider the surface associated to it by the intersection of the natural six $(1, 1, 1, 1)$ forms on this tensor product. Alternatively, think of a linear combination of the four $2 \times 2 \times 2$ cubes with coefficients given by $x \in U$. We look at the locus of x such that the linear combination has discriminant 0 i.e. there exists a unique linear combination in any direction such that the corresponding matrix is singular. If you project to \mathbb{P}^3, you get a quartic surface but has 12 singularities.
The projection to \((\mathbb{P}^1)^3\) restricts to \(X\) giving an embedding and the projection is cut out by a \(2 \times 2 \times 2\) form.

Conversely this \((2, 2, 2)\) form is zero exactly when there’s a linear combination that makes \(A(., s, t, x)\) etc vanish. What are these 12 singular points related to? Consider the projection to one of the \(\mathbb{P}^1\)’s. The generic fiber here is a \((2, 2)\) form in \(\mathbb{P}^1 \times \mathbb{P}^1 - \mathbb{A}\) general curve. Over \(r \in \mathbb{P}^1\) we have the \(2 \times 2 \times 4\) box \(A(r, ., ., .)\) which has a natural degree 4 invariant which is going to be the determinant in \(r\) considered as a \(4 \times 4\) matrix. There’s a singular point exactly when this invariant vanishes i.e. there’s a combination of these four \(2 \times 2\) matrices which is identically 0) Since we have a degree 4 polynomial in \(r\) over which the fiber is singular somewhere. INSERT PRETTY PICTURE. So we get 12 singular points, 4 for each \(\mathbb{P}^1\) and the exceptional divisors are \(-2\) curves which lie in the \(NS\) group but they do not generate it. Generically \(NS(X)\) has rank 13 and discriminant 1024.