Superficial Divergences

Let us consider \(\varphi^3 \) scalar field theory in \(d = 4 \) dimensions. The Lagrangian for this theory is
\[
\mathcal{L} = \frac{1}{2} (\partial_\mu \varphi)^2 - \frac{1}{2} m^2 \varphi^2 - \frac{1}{3!} \lambda \varphi^3.
\]

a) Let us determine the superficial divergence \(D \) for this theory in terms of the number of vertices \(V \) and the number of external lines \(N \). From this we are to show that the theory is super-renormalizable.

In generality, the superficial divergence of a \(\varphi^n \) theory in \(d \) dimensions can be given by
\[
D = dL - 2P,
\]
where \(L \) is the number of loops and \(P \) is the number of propagators because each loop contributes a \(d \)-dimensional integration and each propagator contributes a power of 2 in the denominator. Furthermore, we see that \(nV = N + 2P \) because each external line connects to one vertex and each propagator connects two and each vertex involves \(n \) lines. This implies that \(P = \frac{1}{2} (nV - N) \).

Therefore, still in complete generality, the superficial divergence of a \(\varphi^n \) theory in \(d \)-dimensions may be written
\[
D = dL - 2P = d \frac{d}{2} nV - \frac{d}{2} N - dV + d - nV + N,
\]
\[
= d + \left(n \frac{d}{2} - 2 \right) V - \frac{d}{2} N.
\]

Therefore, in a 4-dimensional \(\varphi^3 \)-theory the superficial divergence is given by
\[
D = 4 - V - N.
\]

We see that because \(D \propto -V \) the theory is super-renormalizable.

b) We are to show the superficially divergent diagrams for this theory that are associated with the exact two-point function.

Using equation (1.a) above, we see that the three superficially divergent diagrams in this \(\varphi^3 \)-theory associated with the exact two-point function are:

\[\includegraphics[width=0.2\textwidth]{superficial_diagram.png} \]

\[\includegraphics[width=0.2\textwidth]{superficial_diagram.png} \]

\[\includegraphics[width=0.2\textwidth]{superficial_diagram.png} \]

c) Let us compute the mass dimension of the coupling constant \(g \).

Because \(\mathcal{L} \) must have dimension (mass)\(^4\), each term should have dimension (mass)\(^4\).

Because of the \(m^2 \varphi^2 \) term, this implies that the field \(\varphi \) has dimension (mass)\(^1\).

Therefore the coupling \(g \) must have dimension (mass)\(^1\).
In the limit where $q \to 0$, we see that this implies

$$\pi(p)\delta \Gamma(u(p)) = \frac{\lambda^2}{2} \int \frac{d^d k}{(2\pi)^d} \frac{\pi(p) \gamma^\mu (k^\mu + m)}{(p - k)^2 - m_0^2 + i\epsilon}(k^2 - m^2 + i\epsilon).$$

Using Feynman parametrization to simplify the denominator, we will use the variables

$$\ell \equiv k - z p \quad \text{and} \quad \Delta \equiv (1 - z)^2 m^2 + zm_0^2.$$

The numerator of the integrand is then reduced to

$$\mathcal{N} = \pi(p) \gamma^\mu (k^\mu + m) \gamma^\nu (k^\nu + m) \mu(u(p)),$$

$$= \pi(p) \left[\gamma^\mu (k^\mu + z^2 \phi^\mu + m z^2 \phi^\mu + m z \gamma^\mu \phi^\nu + m^2 \gamma^\mu \phi^\nu + m^2 \gamma^\mu \gamma^\nu \phi^{\lambda} \right] \mu(u(p)),$$

$$= \pi(p) \left[\frac{d}{d} (2 \gamma^\mu - d \gamma^\nu) + z^2 m^2 \gamma^\mu + m^2 z \gamma^\mu + m^2 \gamma^\nu \right] u(p),$$

$$= \pi(p) \left[\gamma^\mu \left(\frac{2 - d}{d} \ell^2 + m^2 (1 + z^2) \right) \right] u(p).$$

Combining this with our work above, we see that this implies

$$\delta Z_1 = -\delta F_1(q = 0) = -i \lambda^2 \left(1 - \frac{2 - d}{d} \frac{2}{\ell^2 - \Delta + i\epsilon} \right) \mu(u(p)),$$

$$= \frac{\lambda^2}{2} \int_0^1 dz (1 - z^2) \left[2 - d \frac{2}{\ell^2 - \Delta + i\epsilon} \right] \mu(u(p)).$$

Let us now compute the one-loop contribution of ϕ to the electron two-point function,

$$e^- \xrightarrow{p - k} p \xrightarrow{\ell} k \xrightarrow{\Delta} p \xrightarrow{\mu = m} \mu_2$$

We will define the following variables for Feynman parametrization of the denominator:

$$\ell \equiv k - z p, \quad \text{and} \quad \Delta \equiv -z^2 m^2 + zm_0^2 + (1 - z) m^2.$$

We see therefore that

$$\Sigma_{\phi_2} = \frac{\lambda^2}{2} \int \frac{d^d k}{(2\pi)^d} \left[(p - k)^2 - m_0^2 + i\epsilon \right] \frac{\left(\frac{2}{\ell^2 + \Delta} \right)}{(2\gamma^\mu \phi^\nu + m z \gamma^\mu \phi^\nu + m^2 \gamma^\mu \phi^\nu + m^2 \gamma^\mu \gamma^\nu \phi^{\lambda} \right)}.$$

Therefore,

$$\delta Z_2 = \frac{\partial \Sigma_{\phi_2}}{\partial \mu} \bigg|_{\mu = m} = -\frac{\lambda^2}{2} \int_0^1 dz \left[\frac{2}{\ell^2 - \Delta - \gamma E + \log(4\pi)} + \frac{2m z (1 - z)}{\Delta} \right].$$

$$\therefore \delta Z_2 = -\frac{\lambda^2}{2} \int_0^1 dz \left[\frac{2}{\ell^2 - \Delta - \gamma E + \log(4\pi)} + \frac{2m z (1 - z)(1 - z)}{\Delta} \right].$$

(2.a.2)
$\delta Z_2 - \delta Z_1 = \frac{\lambda^2}{32\pi^2} \int_0^1 dz \left[\left(1 - 2z\right) \log \left(\frac{1}{\Delta}\right) + (1 - 2z) \left(\frac{2}{e} - \gamma_E + \log(4\pi)\right) - (1 - z) - \frac{m^2(1 - z)(1 + z)}{\Delta} (2z - (1 + z)) \right],$

$= \frac{\lambda^2}{32\pi^2} \int_0^1 dz \left[(1 - 2z) \log \left(\frac{1}{\Delta}\right) - (1 - z) + \frac{m^2(1 - z)^2(1 + z)}{\Delta} \right].$

$= \frac{\lambda^2}{32\pi^2} \int_0^1 dz \left[(1 - z) - \frac{m^2(1-z)(1-z^2)}{\Delta} - (1 - z) + \frac{m^2(1-z)^2(1+z)}{\Delta} \right].$

$= \frac{\lambda^2}{32\pi^2} \int_0^1 dz \left[-\frac{m^2(1-z)^2(1+z)}{\Delta} + \frac{m^2(1-z^2)(1+z)}{\Delta} \right].$

We can expect that $Z_1 = Z_2$ quite generally in this theory because our proof of the Ward-Takahashi identity relied, fundamentally, on the local $U(1)$ gauge invariance of the A_μ term in the Lagrangian which is not altered by the addition of the scalar ϕ.

b) Let us now consider the renormalization of the $\bar{\psi}\phi\psi$ vertex in this theory.

The two diagrams at the one-loop level that contribute to $\pi(p')\delta\Gamma u(p)$ are

\begin{center}
\begin{tikzpicture}

\draw[thick] (0,0) -- (1,1) node[midway,above]{p'} node[below]{$p - k$} ;
\draw[thick] (1,0) -- (2,1) node[midway,above]{p'} node[below]{$p - k$} ;
\draw[thick] (1,1) -- (2,1) node[midway,above]{$k' = k + q$} ;
\draw[thick] (1,0) -- (2,0) node[midway,above]{$k = k + q$} ;
\draw[thick] (2,1) -- (3,1) node[midway,above]{$p - k$} node[below]{k} ;
\draw[thick] (2,0) -- (3,0) node[midway,above]{$p - k$} node[below]{k} ;
\draw[thick] (3,1) -- (4,1) node[midway,above]{q} ;
\draw[thick] (3,0) -- (4,0) node[midway,above]{q} ;
\draw[thick] (4,1) -- (5,1) node[midway,above]{p'} node[below]{p} ;
\draw[thick] (4,0) -- (5,0) node[midway,above]{p} node[below]{p} ;
\end{tikzpicture}
\end{center}

These diagrams yield

$$\pi(p')\delta\Gamma u(p) = \int \frac{d^4k}{(2\pi)^4} \pi(p') \left[\left(-i\frac{\lambda}{\sqrt{2}}\right) \frac{i}{(p - k)^2 - m^2 + i\epsilon} \frac{i(k + q + m)}{(k + q)^2 - m^2 + i\epsilon} \frac{i(k + m)}{(k^2 - m^2 + i\epsilon)} \left(-i\frac{\lambda}{\sqrt{2}}\right) \right] u(p).$$

Taking the limit where $q \to 0$ and introducing the variables

$$\ell \equiv k - z\rho, \quad \Delta_1 \equiv (1 - z)^2m^2 + z^2m^2_0, \quad \text{and} \quad \Delta_2 \equiv (1 - z)^2m^2 + z^2\mu^2,$$

this becomes,

$$\pi(p')\delta\Gamma u(p) = \int_0^1 dz(1 - z) \int \frac{d^4\ell}{(2\pi)^4} \pi(p) \left[i\lambda^2 \ell^2 + (1 + z)^2m^2 \left(\frac{\Gamma(2 - \Delta_1 + i\epsilon)^2}{(\ell^2 - \Delta_1 + i\epsilon)^3} - 2i\epsilon^2 \frac{d\ell^2 + m^2 (d z^2 + 1) + 2z(2 - d)}{(\ell^2 - \Delta_2 + i\epsilon)^3} \right) u(p).$$

Therefore,

$$\delta Z_1' = -\delta F_1' = \int_0^1 dz(1 - z) \left[-i\lambda^2 \ell^2 + (1 + z)^2m^2 \left(\frac{\Gamma(2 - \Delta_1 + i\epsilon)^2}{(\ell^2 - \Delta_1 + i\epsilon)^3} + 2i\epsilon^2 \frac{d\ell^2 + m^2 (d z^2 + 1) + 2z(2 - d)}{(\ell^2 - \Delta_2 + i\epsilon)^3} \right) \right],$$

$$= \int_0^1 dz(1 - z) \left[\frac{\lambda^2}{16\pi^2} \frac{d}{d\epsilon} \Gamma\left(2 - \frac{\epsilon}{2}\right) - \frac{\epsilon}{2} \frac{d}{d\epsilon} \Gamma\left(2 - \frac{\epsilon}{2}\right) \right] + \text{finite terms},$$

$$= \int_0^1 dz(1 - z) \left[\frac{\lambda^2}{16\pi^2} \frac{2}{\epsilon} - \log \Delta_1 - \gamma_E + \log(4\pi) - \frac{1}{2} \right] + \frac{2\alpha}{\pi} \left(\frac{2}{\epsilon} - \log \Delta_2 - \gamma_E + \log(4\pi) - 1\right) + \text{finite terms},$$

$$= \int_0^1 dz(1 - z) \frac{\lambda^2}{16\pi^2} - \frac{2\alpha}{\pi} + \text{finite terms.} \quad (2.b.2)$$
Now let us compute $\delta Z_2'$. We see that this factor comes from the diagrams,

\[
\begin{array}{c}
\text{\large e^-} \\
p & k & p
\end{array}
\quad + \quad
\begin{array}{c}
\text{\large e^-} \\
p & k & p
\end{array}
\]

We see that we have already computed both of these contributions; the first diagram’s contribution was computed above and the second diagram’s contribution was computed in homework 6.

Therefore, we note that

\[
\delta Z_2' = \frac{1}{\epsilon} \left(-\frac{\lambda^2}{32\pi^2} - \frac{\alpha^2}{2\pi} \right) + \text{finite terms.}
\]

(2.b.3)

Combining these results, we have that

\[
\therefore \delta Z_2' - \delta Z_1' = \frac{3}{\epsilon} \left(\frac{\alpha}{2\pi} - \frac{\lambda^2}{32\pi^2} \right) + \text{finite terms} \neq 0.
\]

(2.b.4)

\[\text{όπερ ἔδει δεῖξαι} \]