The calculation on the previous page clearly shows that particles that were created by \(b \) contribute oppositely to those created by \(a \) to the total charge. We concluded in Homework 2 that this charge was electric charge.

2. a) We are asked to compute the general, K-type Bessel function solution of the Wightman propagator,

\[
D_W(x) \equiv \langle 0 | \phi(x) \phi(0) | 0 \rangle = \int \frac{d^3 p}{(2\pi)^3} \frac{1}{2E_p} e^{-ipx}.
\]

Because \(x \) is a space-like vector, there exists a reference frame such that \(x^0 = 0 \). This implies that \(x^2 = -x^0 \). And this implies that \(px = -p \cdot x = -|p||x| \cos(\theta) = -|p|\sqrt{-x^2} \cos(\theta) \). We can then write \(D_W(x) \) in polar coordinates as

\[
D_W(x) = \frac{1}{(2\pi)^2} \int_0^{2\pi} d\phi \int_{-\infty}^{\infty} e^{i|p|\sqrt{-x^2} \cos(\theta)} \int_0^{\infty} p^2 dp \frac{1}{2\sqrt{p^2 + m^2}},
\]

\[
= \frac{1}{(2\pi)^2} \int_0^{2\pi} d\theta \int_{-\infty}^{\infty} e^{i|p|\sqrt{-x^2} \cos(\theta)} \int_0^{\infty} p^2 dp \frac{1}{2\sqrt{p^2 + m^2}},
\]

(\text{where } \xi = \cos(\theta))

\[
= \frac{1}{4\pi^2} \int_{-\infty}^{\infty} p^2 dp \frac{1}{2\sqrt{p^2 + m^2}} \frac{1}{i|p|\sqrt{-x^2}} \left(e^{i|p|\sqrt{-x^2}} - e^{-i|p|\sqrt{-x^2}} \right),
\]

\[
= \frac{1}{4\pi^2 \sqrt{-x^2}} \int_{-\infty}^{\infty} dp \frac{p \sin(|p|\sqrt{-x^2})}{\sqrt{p^2 + m^2}}.
\]

Gradstein and Ryzhik’s equation (3.754.2) states that for a K Bessel function,

\[
\int_0^\infty dx \frac{\cos(ax)}{\sqrt{b^2 + x^2}} = K_0(a\beta).
\]

By differentiating both sides with respect to \(a \), it is shown that

\[
- \int_0^\infty dx \frac{a \sin(ax)}{\sqrt{b^2 + x^2}} = -\beta K_0'(a\beta) = \beta K_1(a\beta).
\]

We can use this identity to write a more concise equation for \(D_W(x) \). We may conclude

\[
D_W(x) = \frac{m}{4\pi^2 \sqrt{-x^2}} K_1(m\sqrt{-x^2}).
\]

b) We may compute directly,

\[
iD(x) = \langle 0 | \{\phi(x), \phi(0)\} | 0 \rangle,
\]

\[
= \langle 0 | \phi(x), \phi(0) | 0 \rangle - \langle 0 | \phi(0), \phi(x) | 0 \rangle,
\]

\[
= D_W(x) - D_W(-x),
\]

\[
\implies D(x) = iD_W(-x) - D_W(x).
\]

Similarly,

\[
D_1(x) = \langle 0 | \{\phi(x), \phi(0)\} | 0 \rangle = D_W(x) + D_W(-x).
\]

It is clear that both function ‘die off’ very rapidly at large distances. I was not able to conclude that they were truly vanishing, but they are certainly nearly-so at even moderately small distances.