Figure 2.7 Water flows and water bodies in the hydrologic cycle.
Figure 2.2 Energy flows through the atmosphere, soil, and ecosystem. The incoming short wavelengths constitute nearly half of the total solar energy, the remainder being long wavelengths. The percentages are rough global averages and vary from one landscape or ecosystem to another. For example, within a landscape, reflection of incoming energy (albedo) from bare soil is greater than that from an uneven canopy. This variation in albedo is the basis for the usefulness of aerial infrared photographs.

Figure 2.3 Winds, latitudinal zonation, and altitudinal zonation. Zones on mountains extend higher on the equatorial side because the incoming solar radiation is greater there. In tropical areas, rainforests or arid areas may occur on any exposure.
Figure 4.12 Deciduous stream corridor through scrub oak woodland. Scouring by floods on the narrow limestone flood plain dominated by ash (Fraxinus), poplar (Populus), and willow (Salix), is evident. The surrounding matrix is Mediterranean "garrigue" vegetation dominated by green and white oak (Quercus ilex, Q. pubescens). View is from top of the Pont du Gard Roman aqueduct built about 44 B.C. by a proconsul of Augustus Caesar near Nîmes in southern France. (R. Forman.)

Figure 4.13 Structure and functions of a stream corridor. From Forman (1983). (Courtesy of Ekologia CSSR.)
Fig. 5.4 Common sources and settings of deposits in which soils form: wetland, slope, floodplain, and upland wind deposits.
Fig. 18.3 Photographs showing examples of marshes, swamps and bogs.
Fig. 17.5 A profile across a belt of sandy shoreline showing the relationship between plants and landforms including an assessment of the relative resistance of microenvironments to disturbance.
THE GREAT VALLEY

The Great Valley is one of the great agricultural regions of the United States, running generally north-south in three states. It is a great crescent-shaped depression of low land, often punctuated by ridges and uplands. The valley is a fertile area, ideal for agriculture. The land is well drained and has a rich soil. The valley is bordered by the eastern ridges and uplands, which provide a natural boundary for agriculture.

THE PIEDMONT

The Piedmont region is a narrow, elongated plateau that extends from New Hampshire to Georgia. It is characterized by rolling hills and gentle slopes, with few high points. The Piedmont is the transition zone between the Appalachian Mountains and the Coastal Plain. The soils in the Piedmont are generally well-drained and fertile, making it an ideal area for agriculture. The Piedmont is bordered by the Blue Ridge Mountains to the west and the Atlantic Coastal Plain to the east.
Figure 5. A preliminary site evaluation, prepared by Design-Science International, compared with an aerial photograph of the same locality.
THE GREAT VALLEY

The Great Valley is one great agricultural region east of the Rockies—a broad, generally flat valley with predominantly rich limestone soils. There are, however, three subdivisions—the western hills on sandstone, shale, limestone and quartzite, the wide belt of Martinsburg shale and the valley proper of limestone and dolomite. In brief the hills provide the maximum recreational potential, the limestone the agricultural resource, and the shale the best locations for urbanization. This last is important as it ensures that urbanization does not occur over the aquifer.

The resources and their distribution are most felicitous—wooded hills, a fertile valley, a swath of shale suited for urbanization, the latter bordered by a fine river and exhibiting considerable scenic quality.
THE PIEDMONT

The section of the Piedmont illustrated reveals a great complexity—a limestone and dolomite valley, a pre-Cambrian upland of crystalline rocks fissured with intrusions, a broad band of quartzite, yet another of shales. Intrinsic suitabilities respond to geology and the consequential physiography, hydrology, and soils. The limestone and dolomite valley is most suited for agriculture, the shales for pasture and non-commercial forests, some crops, pasture and forests are appropriate to valleys and flood plains in the crystalline area. The most suitable urban sites fall in the crystalline region on flat plateaus and ridges. They are absent on limestone, rare on the shales. This is an area on the edge of urbanization. Opportunities abound but planning must respond to the specific opportunities and constraints afforded by the region.
Spiral Jetty
Robert Smithson, 1970
Partially Buried Woodshed, Robert Smithson, 1970
Broken Circle / Spiral Hill
Robert Smithson, 1971
Asphalt Rundown, 1969
Concrete Pour, 1969
Robert Smithson
Double Negative
Michael Heizer, 1969-70
Complex I
Michael Heizer, 1972-74
Observatory, Robert Morris, 1971
Untitled (Earthwork to Reclaim Gravel Pit), Robert Morris, 1979
Running Fence
Christo and Jeanne-Claude, 1972-76
Surrounded Islands
Christo and Jeanne-Claude, 1983
The Lightning Field
Walter De Maria, 1977
Roden Crater
James Turrell, 1991–
Sea Ranch,
Lawrence Halprin, 1962-65