Problem 00000 Approach 0000000000 Examples 0000 0000000 Conclusion 00

(日) (同) (三) (三)

Appendix 000

1/40

Reconstructing Biological Networks using Additive ODE Models

James Henderson Joint work with George Michailidis Department of Statistics University of Michigan

Annual Report March 26, 2014

Background Proble 0000000 0000	- P.P	0000 0000	.1		Appendix 200
-----------------------------------	-------	-----------	----	--	-----------------

Problem

Approach

Examples

Conclusion

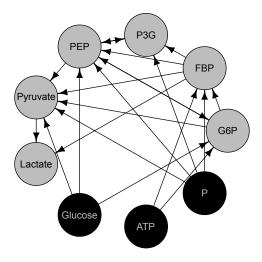
(ロ) (部) (注) (注) (2 / 40
)

Network Representations of Biological Systems

- Biological processes occur through complex reaction networks involving genes, proteins, metabolites and other biochemical molecules
- Networks provide a compact representation of these processes at an appropriate level of abstraction
- Nodes represent biochemical entities
- Edges connect related entities
- Physical meaning of an edge depends on context

Background	Problem	Approach	Examples	Conclusion	Appendix
000000	00000	000000000	0000 0000000	00	000

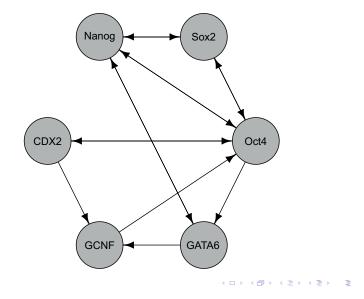
Metabolism: Glycolytic Pathway in Lactocaccus Lactis



<ロ > < 団 > < 団 > < 臣 > < 臣 > 臣 の Q () 4/40

Background	Problem	Approach	Examples	Conclusion	Appendix
000000	00000	000000000	0000	00	000

Gene Regulation: Mouse Embryonic Stem Cells



5 / 40

Approach 000000000 Examples 0000 0000000 Conclusion 00 Appendix 000

Problem and Importance

- Goal: Reconstruct networks using high-throughput data on their nodal entities to determine the edges
- Reconstructing biological networks is a focal problem in systems biology
- Elucidating and understanding the role of networks has many potential applications in basic and applied biology:
 - Metabolic networks help explain how organisms synthesize molecules
 - Gene regulatory networks shed light on how organisms adapt to environmental changes
 - Applications to disease onset, progression, and treatment

- Goal: Reconstruct networks using high-throughput data on their nodal entities to determine the edges
- We focus on time-series data rather than direct perturbation experiments
 - Time-series data are more readily available
 - There is no clear analogue to a 'knockout' in metabolic networks
- Existing approaches include: Vector-Autoregressive Models, Dynamic Bayesian Networks, Process Models specified by ODEs
- Our approach assumes the underlying process can be well approximated by an ODE

Existing Approaches

- Existing approaches include: Vector-Autoregressive Models, Dynamic Bayesian Networks, Process Models specified by ODEs
- Vector-Autoregressive models assume a linear structure on the level of the trajectories
- Dynamic Bayesian Networks computationally intractable for even modestly sized networks
- Process Models specified by ODEs

Approach 00000000000 Examples 0000 0000000 Conclusion 00 Appendix 000

Existing Approaches Based on ODEs

- Most network reconstruction approaches based on ODEs can be viewed as variable selection for the linear model (Oates, 2012).
- Nonlinear approaches usually specify a parametric form for *f* and then pair parameter estimation with a graph search algorithm (Brunel, 2009).
- Biological processes are often highly nonlinear even on the level of the derivatives.
- Linear ODEs are a useful but inadequate first approximation.
- Our approach combines nonparametric smoothing with recent advances in ODE estimation to expand the model class.

Problem •0000 Approach 0000000000 Examples 0000 0000000 Conclusion 00 Appendix 000

Formal Problem Statement

• Process model is a dynamic system described by the autonomous first-order differential equation,

$$\dot{x}_1(t) = f_1(x(t)), \quad x_1(0) = x_{01}$$

:
 $\dot{x}_d(t) = f_d(x(t)), \quad x_d(0) = x_{0d}$

More compactly using vectors,

$$\dot{x}(t) = f(x(t)), x(0) = x_0;$$

 $\dot{x}, x : [0, 1] \rightarrow \mathbb{R}^d;$
 $f : \mathbb{R}^d \rightarrow \mathbb{R}^d.$

• Our goal is to learn which variables are important in each component of $f(x) = (f_1(x), ..., f_d(x))'$.

10/40

Problem 00000

Approach 00000000000 Examples 0000 0000000 Conclusion 00 Appendix 000

Computational Model of Mouse EBSC

$$\begin{split} \dot{x}_{1} &= \frac{a_{0} + a_{1}A + a_{2}x_{1}x_{2} + a_{3}x_{1}x_{2}x_{3}}{1 + b_{0}A + b_{1}x_{1} + b_{2}x_{1}x_{2} + b_{3}x_{1}x_{2}x_{3} + b_{4}x_{4}x_{1} + b_{5}x_{5}} - \beta_{1}x_{1} \\ \dot{x}_{2} &= \frac{c_{0} + c_{1}x_{1}x_{2} + c_{2}x_{1}x_{2}x_{3}}{1 + d_{0}x_{1} + d_{1}x_{1}x_{2} + d_{3}x_{1}x_{2}x_{3}} - \beta_{2}x_{2} \\ \dot{x}_{3} &= \frac{e_{0} + e_{1}x_{1}x_{2} + e_{2}x_{1}x_{2}x_{3}}{1 + f_{0}x_{1} + f_{1}x_{1}x_{2} + f_{2}x_{1}x_{2}x_{3}} - \beta_{2}x_{3} \\ \dot{x}_{4} &= \frac{g_{0} + g_{1}x_{4}}{1 + h_{0}x_{4} + h_{1}x_{4}x_{1}} - \beta_{4}x_{4} \\ \dot{x}_{5} &= \frac{i_{0} + i_{1}x_{4} + i_{2}x_{6}}{1 + j_{0}x_{4} + j_{1}x_{6}} - \beta_{1}x_{5} \\ \dot{x}_{6} &= \frac{p_{0} + p_{1}x_{1} + p_{2}x_{5}}{1 + q_{0}x_{1} + q_{1}x_{4} + q_{2}x_{6}} - \beta_{6}x_{6} \end{split}$$
(Chickarmane, 2008)

Problem 00●00 Approach 00000000000 Examples 0000 0000000 Conclusion 00

Appendix 000

12/40

Formal Problem Statement

- The network to be reconstructed is the graph G = (V, E) with nodes V = {v_i, i = 1, ..., d} corresponding to system components x_i and edges E = ∪ E_i.
- There is an edge $j \rightarrow i$ if $f_i(x)$ depends on x_j .
- Formalize this using partial derivatives,

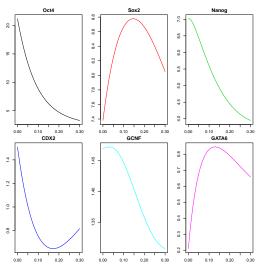
$$E_i = \left\{ j = 1, ..., d : \frac{\partial f_i}{\partial x_j} \neq 0 \right\}.$$

Problem

Approach

Examples 0000 0000000 Conclusion 00 Appendix 000

Trajectories



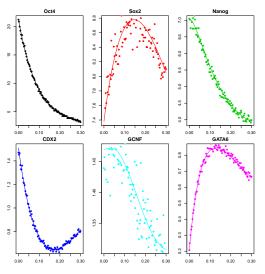
・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ つ へ ()・

Problem

Approach

Examples 0000 0000000 Conclusion 00 Appendix 000

Trajectories

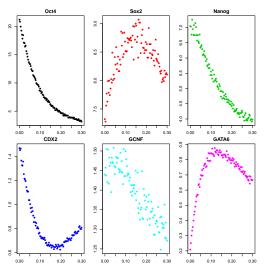


Problem

Approach

Examples 0000 0000000 Conclusion 00 Appendix 000

Trajectories



Problem 0000● Approach 0000000000 Examples 0000 0000000 Conclusion 00

(日) (同) (三) (三)

Appendix 000

14 / 40

Formal Problem Statement

Given noisy observations of the trajectories,

$$Y_k^r = x^r(t_k) + \epsilon_k^r, \quad \{t_k\} \subset [0,1]^n, r = 1, ..., R,$$

our goal is to estimate the edge set, \mathcal{E} .

• This can be viewed as a model selection problem where the goal is to estimate the nonzero elements in the Jacobian,

$$[J(f)]_{ij}=\frac{\partial f_i}{\partial x_j}.$$

ŧ

Conclusion 00 Appendix 000

Our Approach

• We do not assume knowledge of the functional form of *f* but instead estimate it using a nonparametric additive model,

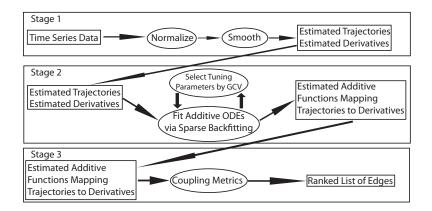
$$f = (f_1, \dots, f_d)',$$

$$f_i(x) = \alpha_i + \sum_{j=1}^d f_{ij}(x_j)$$

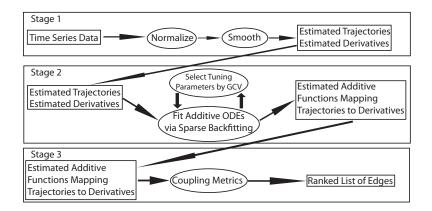
- Smoothness conditions $f_{ij} \in C^2$ with $\int [\ddot{F}_{ij}(z)]^2 dz < \infty$.
- For identifiability the component functions have mean zero,

$$\int f_{ij}(x)dx=0.$$

Background 0000000	Problem 00000	Approach 000000000	Examples 0000 0000000	Conclusion 00	Appendix 000
		Workf	low		



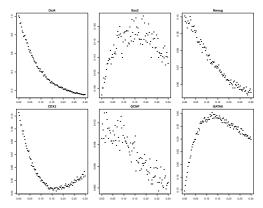
Background 0000000	Problem 00000	Approach 000000000	Examples 0000 0000000	Conclusion 00	Appendix 000
		Workf	low		



Problem 00000 Approach

Examples 0000 0000000 Conclusion 00 Appendix 000

Normalize and Smooth

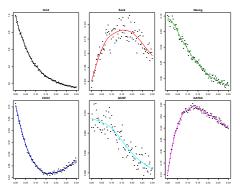


• Data are rescaled so that each component has maximum observation 1:

$$\tilde{Y}_{ik}^r = Y_{ik}^r / M_i \quad \text{with } M_i = \max_{\substack{k,r \\ k,r \\ k$$

Approach 0000000000

Normalize and Smooth



• Trajectories are estimated using smoothing splines,

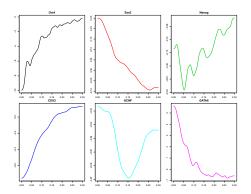
$$\hat{x}_{i}^{r} = \arg \min_{x \in W_{2}^{2}[0,1]} \sum_{k=1}^{n} [\tilde{Y}_{ik}^{r} - x(t_{k})]^{2} + \lambda_{0} \int_{0}^{1} [\ddot{x}(t)]^{2} dt.$$
Iution is $\hat{x}_{i}^{r}(t) = \gamma_{i}^{r} b(t).$

• Solution is $\hat{x}_i^r(t) =$ $\gamma_i D(l)$.

Background	
0000000	

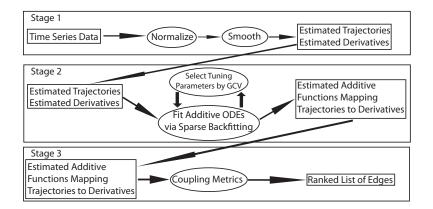
Problem 00000 Approach 0000000000 Examples 0000 0000000 Conclusion 00 Appendix 000

Normalize and Smooth



• Estimate the derivatives using the derivative of the smoothing spline, $\hat{x} = \gamma_i^r \dot{b}(t)$.

Background 0000000	Problem 00000	Approach 0000000000	Examples 0000 0000000	Conclusion 00	Appendix 000
		M/aula	la		



◆□ > ◆□ > ◆目 > ◆目 > ○目 ○ のへで

Approach 00000000000 Examples 0000 0000000 Conclusion 00 Appendix 000

Estimate an Additive ODE

• Our M-estimators are defined by the criterion,

$$\hat{M}_{n,r}(f_i) = \int_0^1 \left[\hat{x}_i^r(t) - \sum_{j=1}^d f_{ij}(\hat{x}_j^r(t)) \right]^2 w(t) dt + J(f_i; \lambda_1, \lambda_2)$$

• The penalty enforces both smoothness and sparsity,

$$J(f_i; \lambda_1, \lambda_2) := \lambda_1 \sum_{j=1}^d \int [\ddot{f}_{ij}(x)]^2 dx + \lambda_2 \sum_{j=1}^d \sqrt{\int [f_{ij}(x)]^2 dx}.$$

The estimators are,

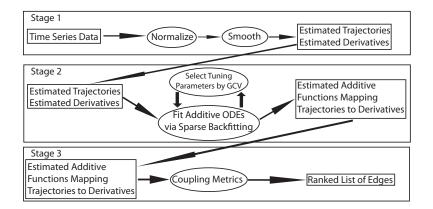
$$\hat{f}_i = \arg\min_{f_i \in \mathcal{D}} R^{-1} \sum_{r=1}^R \hat{M}_{n,r}(f_i).$$

• The estimator combines ideas from (Gugushvili, 2012) and (Ravikumar, 2009).

Algorithm

- The estimator is found using a modified version of the sparse-backfitting algorithm from (Ravikumar, 2009).
- Iteratively solves univariate smoothing spline problems and applies a soft-threshold.
- Each univariate smoother corresponds to a component trajectory.
- Procedure is highly parallelizable and allows for a number of numeric efficiencies.

Background 0000000	Problem 00000	Approach 00000000●0	Examples 0000 0000000	Conclusion 00	Appendix 000
			1.		



◆□ > ◆□ > ◆目 > ◆目 > ○目 ○ のへで

Problem 00000 Approach 000000000 Examples 0000 0000000 Conclusion 00 Appendix 000

Coupling Metrics

• Due to the additive structure,

$$\frac{\partial f_i}{\partial x_j} = 0 \iff f_{ij} \equiv 0.$$

• To measure the strength of potential relationship $v_j \rightarrow v_i$ we use the coupling metric,

$$\rho_{ij} := \sqrt{\frac{\int_{\mathcal{R}_j} [\hat{f}_{ij}(z)]^2 dz}{|\mathcal{R}_j|}},$$

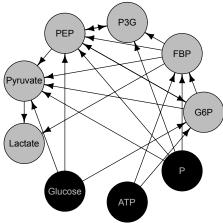
with \mathcal{R}_j the observed range of x_j and $|\mathcal{R}_j|$ its length.

• The ρ_{ij} are used to rank potential edges.

nd Pi

Approach 000000000 Conclusion 00 Appendix 000

Glycolytic Pathway in Lactocaccus Lactis



• (Voit, 2006)

• Small network with dense edge set so fix $\lambda_2 = 0$ in advance.

Setup

• Six experimental runs over-expressing each component in turn,

$$\begin{cases} x_i^r(0) = x_{0i}, & i \neq r \\ x_i^r(0) = M x_{0i}, & i = r. \end{cases}$$

• The trajectories were sampled at *n* = 100 times with noise added to simulate measurement error,

$$Y_k^r = x^r(t_k) + \epsilon_{rk}, \quad \epsilon_{ki}^r \stackrel{indp.}{\sim} N(0, [\sigma x_i^r(t_k)]^2).$$

3

26 / 40

Problem 00000 Approach 0000000000 Examples

Conclusion 00 Appendix 000

Area under the precision-recall curve.

	$\sigma = .02$	$\sigma = .05$
M=10, Additive ODE	.92 (.918, .920)	.91 (.909, .912)
$M{=}10$, Linear ODE	.84 (.840, .841)	.83 (.832, .835)
M=10, Linear ODE + Lasso	.65 (.650, .657)	.67 (.669, .677)
M $=$ 10, Inferelator 1.0	.75 (.741, .750)	.74 (.734, .741)
M=5, Additive ODE	.88 (.881, .883)	.86 (.859, .862)
M=5, Linear ODE	.80 (.802, .804)	.78 (.776, .781)
M=5, Linear ODE + Lasso	.71 (.710, .715)	.73 (.723, .729)
M=5, Inferelator 1.0	.78 (.778, .787)	.77 (.764, .772)
M=2, Additive ODE	.55 (.549, .553)	.49 (.490, .498)
M=2, Linear ODE	.57 (.567, .569)	.57 (.567, .572)
M=2, Linear ODE + Lasso	.56 (.556, .559)	.61 (.605, .612)
M=2, Inferelator 1.0	.62 (.618, .624)	.60 (.592, .599)

Problem 00000 Approach 0000000000 Examples

Conclusion 00 Appendix 000

Area under the ROC curve

	$\sigma = .02$	$\sigma = .05$
M=10, Additive ODE	.91 (.904, .906)	.90 (.895, .897)
$M{=}10$, Linear ODE	.83 (.826, .828)	.82 (.815, .820)
M=10, Linear ODE + Lasso	.65 (.650, .657)	.67 (.669, .677)
M $=$ 10, Inferelator 1.0	.75 (.744, .753)	.74 (.733, .742)
M=5, Additive ODE	.87 (.871, .874)	.85 (.852, .856)
M=5, Linear ODE	.78 (.781, .783)	.73 (.726, .731)
M=5, Linear ODE + Lasso	.71 (.710, .715)	.73 (.723, .729)
M=5, Inferelator 1.0	.77 (.764, .774)	.76 (.751, .759)
M=2, Additive ODE	.66 (.663, .666)	.59 (.584, .591)
M=2, Linear ODE	.57 (.572, .574)	.54 (.537, .542)
M=2, Linear ODE + Lasso	.56 (.556, .559)	.61 (.605, .612)
M=2, Inferelator 1.0	.61 (.612, .618)	.59 (.586, .597)

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 のへの

- Dialogue on Reverse Engineering and Assessment Methodologies (DREAM) competitions were set up to assess network reconstruction and related methods.
- (Marbach et al 2009, 2010, 2012; Prill et al 2010)
- Data generated from realistic, thermodynamics-based *in silico* models of gene regulation.
- DREAM 3 data knockouts, knockdowns, and multifactorial time series (4 and 46 series with n = 21 time points)
- We used knockouts to restrict the search space before applying additive ODEs.

Approach 00000000000 Examples

Conclusion 00 Appendix 000

Results on DREAM 3 10-Node competition data

		E1	E2	Y1	Y2	Y3
	Team 256	.396	.258	.258	.481	.434
PR	Team 304	.193	.377	.468	.332	.388
FN	Team 315	.710	.713	.897	.541	.627
	Additive ODEs	.875	.632	.558	.491	.510
ROC	Team 256	.720	.622	.591	.591	.625
	Team 304	.697	.791	.909	.554	.658
RUC	Team 315	.928	.912	.949	.747	.714
	Additive ODEs	.976	.885	.906	.673	.654

Approach 0000000000 Examples

Conclusion 00 Appendix 000

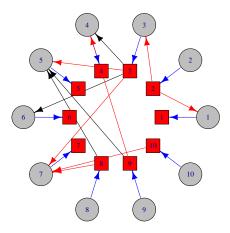
Results on DREAM 3 100-Node competition data

		E1	E2	Y1	Y2	Y3
	Team 304	.132	.154	.159	.179	.161
PR	Team 315	.694	.806	.493	.469	.433
ГΛ	Additive ODEs	.623	.841	.466	.424	.396
	Team 304	.835	.879	.839	.738	.667
ROC	Team 315	.948	.960	.915	.856	.783
NUC	Additive ODEs	.867	.953	.820	.787	.734

ckground	Problem	Approach
00000	00000	0000000

Ba oc Examples 0000 0000000 Conclusion 00 Appendix 000

Layers of Approximation

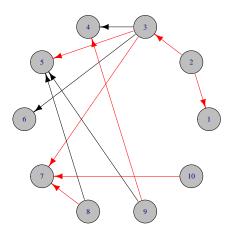


< □ ▶ < 圖 ▶ < 置 ▶ < 置 ▶ 置 の Q (~ 32 / 40

Background	Problem	Approach	Examples	Conclusion
000000	00000	000000000	0000	00

Appendix

Layers of Approximation



Layers of Approximation

• Deterministic model with transcription, translation, and degradation:

$$\begin{split} \dot{x}_i &= m_i g_i(y) - \lambda_i x_i \qquad & (\text{Genes}) \\ \dot{y}_i &= r_i x_i - \delta_i y_i \qquad & (\text{Proteins}) \end{split}$$

• The activation function depends on the state S_m of the gene

$$g_i(y) = \sum_{m=0}^{2^{N_i}-1} \alpha_m P[S_m]$$

Problem 00000 Approach 0000000000 Examples

Conclusion 00 Appendix 000

٠

Layers of Approximation

• The activation function depends on the state S_m of the gene

$$g_i(y) = \sum_{m=0}^{2^{N_i}-1} \alpha_m P[S_m]$$

• If
$$N_i = 1$$
 and $j \rightarrow i$,

$$g_i(y) = rac{lpha_0 + lpha_1 (y_j/k_{ij})^{\eta_{ij}}}{1 + (y_j/k_{ij})^{\eta_{ij}}}.$$

• If $N_i = 2, j \rightarrow i, \ell \rightarrow i$,

$$g_i(y) = \frac{\alpha_0 + \alpha_1 (y_j/k_{ij})^{\eta_{ij}} + \alpha_2 (y_\ell/k_{i\ell})^{\eta_{i\ell}} + \alpha_3 \rho (y_j/k_{ij})^{\eta_{ij}} (y_\ell/k_{i\ell})^{\eta_{i\ell}}}{1 + (y_j/k_{ij})^{\eta_{ij}} + (y_\ell/k_{i\ell})^{\eta_{i\ell}} + \rho (y_j/k_{ij})^{\eta_{ij}} (y_j/k_{i\ell})^{\eta_{i\ell}}}$$

Approach 0000000000 Examples

Conclusion 00 Appendix 000

Layers of Approximation

• Deterministic model with transcription, translation, and degradation:

$$\begin{aligned} \dot{x}_i &= m_i g_i(y) - \lambda_i x_i & (Genes) \\ \dot{y}_i &= r_i x_i - \delta_i y_i & (Proteins) \end{aligned}$$

• Stochastic model written as a Chemical Langevin Equation,

$$dX_{ti}/dt = m_i g_i(Y_t) - \lambda_i X_{ti} + c(\sqrt{m_i g_i(Y_t)}B_1 + \sqrt{\lambda_i X_{ti}}B_2)$$

$$dY_{ti}/dt = r_i X_{ti} - \delta_i Y_{ti} + c(\sqrt{r_i Y_{it}}B_3 + \sqrt{\delta_i Y_{ti}}B_4)$$

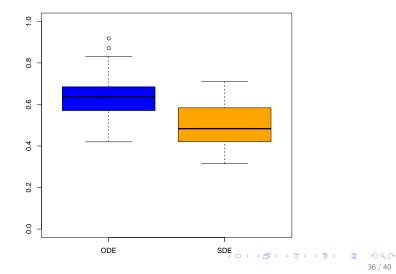
• *B_k* are standard Brownian motions.

 Background
 Problem
 Approach
 Examples
 Conclusion
 Appendix

 0000000
 0000
 0000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000

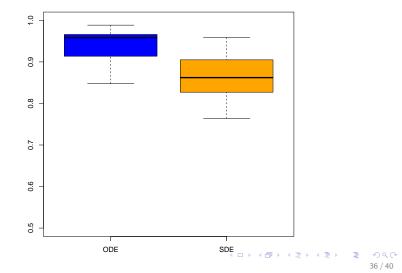
Comparing Deterministic and Stochastic Dynamics

AUC Precison-Recall



Comparing Deterministic and Stochastic Dynamics

AUC ROC



- We show how nonparametric additive ODE models can be used for *de novo* network reconstruction.
- Moving from linear to additive ODEs may lead to improvements when the signal is sufficiently strong.
- Performance is comparable to top-performers on gold-standard competition data and outperforms other approaches relying primarily on time-series.
- Performance falls off but remains reasonable when approximating stochastic dynamics.

Problem 00000 Approach 0000000000 Examples 0000 0000000 Conclusion O• Appendix 000

Thank You!

Questions?

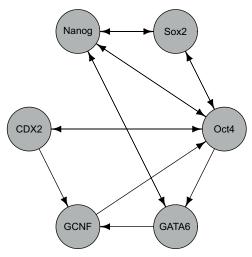
For further details see: Henderson J, Michailidis G (2014) Network Reconstruction using Nonparametric Additive ODE Models. PLoS One (Forthcoming)

Send comments or additional questions to jbhender@umich.edu

Problem	Approach
00000	00000000

Examp 0000 00000 Conclusio 00 Appendix •00

Mouse Embryonic Stem Cells



• (Chickarmane, 2008)

Background	Problem	Approach	Examples	Conclusion	Appendix
000000	00000	000000000	0000	00	000

Area under the precision-recall curve for the mouse system

	$\sigma = .02$	$\sigma = .05$
M=10, Additive ODE	.98 (.980, .981)	.98 (.977, .978)
M=10, Linear ODE	.96 (.963, .963)	.96 (.953, .957)
M=10, Linear ODE + Lasso	.75 (.744, .746)	.74 (.736, .741)
M $=$ 10, Inferelator 1.0	.66 (.655, .668)	.62 (.615, .629)
M=5, Additive ODE	.98 (.984, .985)	.98 (.979, .981)
M=5, Linear ODE	.97 (.969, .970)	.96 (.963, .965)
M=5, Linear ODE + Lasso	.75 (.751, .753)	.74 (.740, .745)
M=5, Inferelator 1.0	.70 (.696, .708)	.65 (.641, .656)
M=2, Additive ODE	.98 (.977, .979)	.94 (.935, .941)
M=2, Linear ODE	.98 (.976, .978)	.96 (.953, .958)
M=2, Linear ODE + Lasso	.76 (.758, .762)	.74 (.741, .748)
M=2, Inferelator 1.0	.70 (.700, .707)	.61 (.601, .614)

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

40 / 40

ackground	Problem	Approach
000000	00000	0000000000

Ba

Examples 0000 0000000 Conclusion

Appendix 000

Area under the ROC curve for the mouse system.

	$\sigma = .02$	$\sigma = .05$
M=10, Additive ODE	.98 (.979, .980)	.98 (.974, .976)
$M{=}10$, Linear ODE	.94 (.936, .938)	.93 (.926, .930)
M=10, Linear ODE + Lasso	.75 (.744, .746)	.74 (.736, .741)
$M{=}10$, Inferelator 1.0	.60 (.598, .611)	.57 (.567, .579)
M=5, Additive ODE	.98 (.982, .983)	.98 (.975, .977)
M=5, Linear ODE	.96 (.956, .958)	.95 (.946, .949)
M=5, Linear ODE + Lasso	.75 (.751, .753)	.74 (.740, .745)
M=5, Inferelator 1.0	.65 (.644, .655)	.60 (.588, .602)
M=2, Additive ODE	.97 (.969, .972)	.93 (.925, .932)
M=2, Linear ODE	.97 (.968, .971)	.95 (.943, .949)
M=2, Linear ODE + Lasso	.76 (.758, .762)	.74 (.741, .748)
M=2, Inferelator 1.0	.66 (.658, .665)	.58 (.577, .589)