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Network Representations of Biological Systems

• Biological processes occur through complex reaction networks
involving genes, proteins, metabolites and other biochemical
molecules

• Networks provide a compact representation of these processes
at an appropriate level of abstraction

• Nodes represent biochemical entities

• Edges connect related entities

• Physical meaning of an edge depends on context
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Metabolism: Glycolytic Pathway in Lactocaccus Lactis
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Problem and Importance

• Goal: Reconstruct networks using high-throughput data on
their nodal entities to determine the edges

• Reconstructing biological networks is a focal problem in
systems biology

• Elucidating and understanding the role of networks has many
potential applications in basic and applied biology:

• Metabolic networks help explain how organisms synthesize
molecules

• Gene regulatory networks shed light on how organisms adapt
to environmental changes

• Applications to disease onset, progression, and treatment
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Problem

• Goal: Reconstruct networks using high-throughput data on
their nodal entities to determine the edges

• We focus on time-series data rather than direct perturbation
experiments

• Time-series data are more readily available
• There is no clear analogue to a ‘knockout’ in metabolic

networks

• Existing approaches include: Vector-Autoregressive Models,
Dynamic Bayesian Networks, Process Models specified by
ODEs

• Our approach assumes the underlying process can be well
approximated by an ODE
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Existing Approaches

• Existing approaches include: Vector-Autoregressive Models,
Dynamic Bayesian Networks, Process Models specified by
ODEs

• Vector-Autoregressive models - assume a linear structure on
the level of the trajectories

• Dynamic Bayesian Networks - computationally intractable for
even modestly sized networks

• Process Models specified by ODEs
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Existing Approaches Based on ODEs

• Most network reconstruction approaches based on ODEs can
be viewed as variable selection for the linear model (Oates,
2012).

• Nonlinear approaches usually specify a parametric form for f
and then pair parameter estimation with a graph search
algorithm (Brunel, 2009).

• Biological processes are often highly nonlinear – even on the
level of the derivatives.

• Linear ODEs are a useful but inadequate first approximation.

• Our approach combines nonparametric smoothing with recent
advances in ODE estimation to expand the model class.
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Formal Problem Statement

• Process model is a dynamic system described by the
autonomous first-order differential equation,

ẋ1(t) = f1(x(t)), x1(0) = x01
...

ẋd(t) = fd(x(t)), xd(0) = x0d

• More compactly using vectors,

ẋ(t) = f (x(t)), x(0) = x0;

ẋ , x : [0, 1]→ Rd ;

f : Rd → Rd .

• Our goal is to learn which variables are important in each
component of f (x) = (f1(x), ..., fd(x))′.
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Computational Model of Mouse EBSC

ẋ1 =
a0 + a1A + a2x1x2 + a3x1x2x3

1 + b0A + b1x1 + b2x1x2 + b3x1x2x3 + b4x4x1 + b5x5
− β1x1

ẋ2 =
c0 + c1x1x2 + c2x1x2x3

1 + d0x1 + d1x1x2 + d3x1x2x3
− β2x2

ẋ3 =
e0 + e1x1x2 + e2x1x2x3

1 + f0x1 + f1x1x2 + f2x1x2x3
− β2x3

ẋ4 =
g0 + g1x4

1 + h0x4 + h1x4x1
− β4x4

ẋ5 =
i0 + i1x4 + i2x6
1 + j0x4 + j1x6

− β1x5

ẋ6 =
p0 + p1x1 + p2x5

1 + q0x1 + q1x4 + q2x6
− β6x6 (Chickarmane, 2008)
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Formal Problem Statement

• The network to be reconstructed is the graph G = (V , E) with
nodes V = {vi , i = 1, ..., d} corresponding to system
components xi and edges E =

⋃
Ei .

• There is an edge j → i if fi (x) depends on xj .

• Formalize this using partial derivatives,

Ei =

{
j = 1, ..., d :

∂fi
∂xj
6= 0

}
.
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Trajectories
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Trajectories
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Formal Problem Statement

• Given noisy observations of the trajectories,

Y r
k = x r (tk) + εrk , {tk} ⊂ [0, 1]n, r = 1, ...,R,

our goal is to estimate the edge set, E .

• This can be viewed as a model selection problem where the
goal is to estimate the nonzero elements in the Jacobian,

[J(f )]ij =
∂fi
∂xj

.
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Our Approach

• We do not assume knowledge of the functional form of f but
instead estimate it using a nonparametric additive model,

f = (f1, ..., fd)′,

fi (x) = αi +
d∑

j=1

fij(xj).

• Smoothness conditions fij ∈ C2 with
∫

[f̈ij(z)]2dz <∞.

• For identifiability the component functions have mean zero,∫
fij(x)dx = 0.
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Workflow
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Normalize and Smooth
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• Data are rescaled so that each component has maximum
observation 1:

Ỹ r
ik = Y r

ik/Mi with Mi = max
k,r

Y r
ik .
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Normalize and Smooth
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• Trajectories are estimated using smoothing splines,

x̂ ri = arg min
x∈W 2

2 [0,1]

n∑
k=1

[Ỹ r
ik − x(tk)]2 + λ0

∫ 1

0
[ẍ(t)]2dt.

• Solution is x̂ ri (t) = γri b(t).
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Normalize and Smooth
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• Estimate the derivatives using the derivative of the smoothing
spline, ˆ̇x = γri ḃ(t).
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Workflow

Estimated Trajectories
Estimated Derivatives

Fit Additive ODEs 
via Sparse Back!tting

Select Tuning 
Parameters by GCV

Estimated Additive 
Functions Mapping
Trajectories to Derivatives

Coupling Metrics

Time Series Data
Estimated Trajectories
Estimated Derivatives

Estimated Additive 
Functions Mapping
Trajectories to Derivatives

Ranked List of Edges

Normalize Smooth

Stage 1

Stage 2

Stage 3
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Estimate an Additive ODE
• Our M-estimators are defined by the criterion,

M̂n,r (fi ) =

∫ 1

0

ˆ̇x ri (t)−
d∑

j=1

fij(x̂
r
j (t))

2

w(t)dt + J(fi ;λ1, λ2)

• The penalty enforces both smoothness and sparsity,

J(fi ;λ1, λ2) := λ1

d∑
j=1

∫
[f̈ij(x)]2dx + λ2

d∑
j=1

√∫
[fij(x)]2dx .

• The estimators are,

f̂i = arg min
fi∈D

R−1
R∑

r=1

M̂n,r (fi ).

• The estimator combines ideas from (Gugushvili, 2012) and
(Ravikumar, 2009).
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Algorithm

• The estimator is found using a modified version of the
sparse-backfitting algorithm from (Ravikumar, 2009).

• Iteratively solves univariate smoothing spline problems and
applies a soft-threshold.

• Each univariate smoother corresponds to a component
trajectory.

• Procedure is highly parallelizable and allows for a number of
numeric efficiencies.
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Workflow

Estimated Trajectories
Estimated Derivatives

Fit Additive ODEs 
via Sparse Back!tting

Select Tuning 
Parameters by GCV

Estimated Additive 
Functions Mapping
Trajectories to Derivatives

Coupling Metrics

Time Series Data
Estimated Trajectories
Estimated Derivatives

Estimated Additive 
Functions Mapping
Trajectories to Derivatives

Ranked List of Edges

Normalize Smooth

Stage 1

Stage 2

Stage 3
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Coupling Metrics

• Due to the additive structure,

∂fi
∂xj

= 0 ⇐⇒ fij ≡ 0.

• To measure the strength of potential relationship vj → vi we
use the coupling metric,

ρij :=

√√√√∫Rj
[f̂ij(z)]2dz

|Rj |
,

with Rj the observed range of xj and |Rj | its length.

• The ρij are used to rank potential edges.
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Glycolytic Pathway in Lactocaccus Lactis

G6P

FBP

P3G
PEP

Pyruvate

Lactate

Glucose
ATP

P

• (Voit, 2006)

• Small network with dense edge set so fix λ2 = 0 in advance.
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Setup

• Six experimental runs over-expressing each component in turn,{
x ri (0) = x0i , i 6= r

x ri (0) = Mx0i , i = r .

• The trajectories were sampled at n = 100 times with noise
added to simulate measurement error,

Y r
k = x r (tk) + εrk , εrki

indp.∼ N(0, [σx ri (tk)]2).
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Area under the precision-recall curve.

σ = .02 σ = .05

M=10, Additive ODE .92 (.918, .920) .91 (.909, .912)
M=10, Linear ODE .84 (.840, .841) .83 (.832, .835)

M=10, Linear ODE + Lasso .65 (.650, .657) .67 (.669, .677)
M=10, Inferelator 1.0 .75 (.741, .750) .74 (.734, .741)

M=5, Additive ODE .88 (.881, .883) .86 (.859, .862)
M=5, Linear ODE .80 (.802, .804) .78 (.776, .781)

M=5, Linear ODE + Lasso .71 (.710, .715) .73 (.723, .729)
M=5, Inferelator 1.0 .78 (.778, .787) .77 (.764, .772)

M=2, Additive ODE .55 (.549, .553) .49 (.490, .498)
M=2, Linear ODE .57 (.567, .569) .57 (.567, .572)

M=2, Linear ODE + Lasso .56 (.556, .559) .61 (.605, .612)
M=2, Inferelator 1.0 .62 (.618, .624) .60 (.592, .599)
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Area under the ROC curve

σ = .02 σ = .05

M=10, Additive ODE .91 (.904, .906) .90 (.895, .897)
M=10, Linear ODE .83 (.826, .828) .82 (.815, .820)

M=10, Linear ODE + Lasso .65 (.650, .657) .67 (.669, .677)
M=10, Inferelator 1.0 .75 (.744, .753) .74 (.733, .742)

M=5, Additive ODE .87 (.871, .874) .85 (.852, .856)
M=5, Linear ODE .78 (.781, .783) .73 (.726, .731)

M=5, Linear ODE + Lasso .71 (.710, .715) .73 (.723, .729)
M=5, Inferelator 1.0 .77 (.764, .774) .76 (.751, .759)

M=2, Additive ODE .66 (.663, .666) .59 (.584, .591)
M=2, Linear ODE .57 (.572, .574) .54 (.537, .542)

M=2, Linear ODE + Lasso .56 (.556, .559) .61 (.605, .612)
M=2, Inferelator 1.0 .61 (.612, .618) .59 (.586, .597)
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DREAM

• Dialogue on Reverse Engineering and Assessment
Methodologies (DREAM) competitions were set up to assess
network reconstruction and related methods.

• (Marbach et al 2009, 2010, 2012; Prill et al 2010)

• Data generated from realistic, thermodynamics-based in silico
models of gene regulation.

• DREAM 3 data - knockouts, knockdowns, and multifactorial
time series (4 and 46 series with n = 21 time points)

• We used knockouts to restrict the search space before
applying additive ODEs.
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Results on DREAM 3 10-Node competition data

E1 E2 Y1 Y2 Y3

PR

Team 256 .396 .258 .258 .481 .434
Team 304 .193 .377 .468 .332 .388
Team 315 .710 .713 .897 .541 .627

Additive ODEs .875 .632 .558 .491 .510

ROC

Team 256 .720 .622 .591 .591 .625
Team 304 .697 .791 .909 .554 .658
Team 315 .928 .912 .949 .747 .714

Additive ODEs .976 .885 .906 .673 .654
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Results on DREAM 3 100-Node competition data

E1 E2 Y1 Y2 Y3

PR

Team 304 .132 .154 .159 .179 .161
Team 315 .694 .806 .493 .469 .433

Additive ODEs .623 .841 .466 .424 .396

ROC

Team 304 .835 .879 .839 .738 .667
Team 315 .948 .960 .915 .856 .783

Additive ODEs .867 .953 .820 .787 .734
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Layers of Approximation
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Layers of Approximation
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Layers of Approximation

• Deterministic model with transcription, translation, and
degradation:

ẋi = migi (y)− λixi (Genes)

ẏi = rixi − δiyi (Proteins)

• The activation function depends on the state Sm of the gene

gi (y) =
2Ni−1∑
m=0

αmP[Sm]
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Layers of Approximation

• The activation function depends on the state Sm of the gene

gi (y) =
2Ni−1∑
m=0

αmP[Sm]

• If Ni = 1 and j → i ,

gi (y) =
α0 + α1(yj/kij)

ηij

1 + (yj/kij)ηij
.

• If Ni = 2, j → i , `→ i ,

gi (y) =
α0 + α1(yj/kij)

ηij + α2(y`/ki`)
ηi` + α3ρ(yj/kij)

ηij (y`/ki`)
ηi`

1 + (yj/kij)ηij + (y`/ki`)ηi` + ρ(yj/kij)ηij (yj/ki`)ηi`
.
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Layers of Approximation

• Deterministic model with transcription, translation, and
degradation:

ẋi = migi (y)− λixi (Genes)

ẏi = rixi − δiyi (Proteins)

• Stochastic model written as a Chemical Langevin Equation,

dXti/dt = migi (Yt)− λiXti + c(
√

migi (Yt)B1 +
√
λiXtiB2)

dYti/dt = riXti − δiYti + c(
√
riYitB3 +

√
δiYtiB4)

• Bk are standard Brownian motions.
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Comparing Deterministic and Stochastic Dynamics
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Comparing Deterministic and Stochastic Dynamics
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Conclusions

• We show how nonparametric additive ODE models can be
used for de novo network reconstruction.

• Moving from linear to additive ODEs may lead to
improvements when the signal is sufficiently strong.

• Performance is comparable to top-performers on
gold-standard competition data and outperforms other
approaches relying primarily on time-series.

• Performance falls off but remains reasonable when
approximating stochastic dynamics.
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Thank You!

Questions?

For further details see: Henderson J, Michailidis G (2014)
Network Reconstruction using Nonparametric Additive ODE
Models. PLoS One (Forthcoming)

Send comments or additional questions to
jbhender@umich.edu
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Mouse Embryonic Stem Cells

Oct4

Sox2Nanog

CDX2

GCNF GATA6

• (Chickarmane, 2008)
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Area under the precision-recall curve for the mouse system

σ = .02 σ = .05

M=10, Additive ODE .98 (.980, .981) .98 (.977, .978)
M=10, Linear ODE .96 (.963, .963) .96 (.953, .957)

M=10, Linear ODE + Lasso .75 (.744, .746) .74 (.736, .741)
M=10, Inferelator 1.0 .66 (.655, .668) .62 (.615, .629)

M=5, Additive ODE .98 (.984, .985) .98 (.979, .981)
M=5, Linear ODE .97 (.969, .970) .96 (.963, .965)

M=5, Linear ODE + Lasso .75 (.751, .753) .74 (.740, .745)
M=5, Inferelator 1.0 .70 (.696, .708) .65 (.641, .656)

M=2, Additive ODE .98 (.977, .979) .94 (.935, .941)
M=2, Linear ODE .98 (.976, .978) .96 (.953, .958)

M=2, Linear ODE + Lasso .76 (.758, .762) .74 (.741, .748)
M=2, Inferelator 1.0 .70 (.700, .707) .61 (.601, .614)
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Area under the ROC curve for the mouse system.

σ = .02 σ = .05

M=10, Additive ODE .98 (.979, .980) .98 (.974, .976)
M=10, Linear ODE .94 (.936, .938) .93 (.926, .930)

M=10, Linear ODE + Lasso .75 (.744, .746) .74 (.736, .741)
M=10, Inferelator 1.0 .60 (.598, .611) .57 (.567, .579)

M=5, Additive ODE .98 (.982, .983) .98 (.975, .977)
M=5, Linear ODE .96 (.956, .958) .95 (.946, .949)

M=5, Linear ODE + Lasso .75 (.751, .753) .74 (.740, .745)
M=5, Inferelator 1.0 .65 (.644, .655) .60 (.588, .602)

M=2, Additive ODE .97 (.969, .972) .93 (.925, .932)
M=2, Linear ODE .97 (.968, .971) .95 (.943, .949)

M=2, Linear ODE + Lasso .76 (.758, .762) .74 (.741, .748)
M=2, Inferelator 1.0 .66 (.658, .665) .58 (.577, .589)
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