Riemann Surfaces and Dynamics

Bradley Zykoski

March 14, 2020

Bradley Zykoski

Riemann Surfaces and Dynamics

March 14, 2020 1 / 20

Billiards and unfolding

- Ø Moduli spaces
- The illumination problem

Image: A matrix and a matrix

Billiards and unfolding

Ø Moduli spaces

The illumination problem

< 67 ▶

- Billiards and unfolding
- Ø Moduli spaces
- Interpretation of the illumination problem

< 一型

We consider a polygon P, and we want to study the straight-line trajectories on P that bounce off the sides with an angle of reflection equal to the angle of incidence.

We consider a polygon P, and we want to study the straight-line trajectories on P that bounce off the sides with an angle of reflection equal to the angle of incidence.

Unfolding a Table

We don't want to keep track of a sequence of angles! We unfold the table at every point of incidence, so that we have a mirror-version of our table where the path continues in a straight line

Unfolding a Table

We don't want to keep track of a sequence of angles! We unfold the table at every point of incidence, so that we have a mirror-version of our table where the path continues in a straight line

Fig. 2. Unfolding a billiard trajectory.

Bradley Zykoski

Riemann Surfaces and Dynamics

Let G be the subgroup of O(2) generated by the reflections through the sides of P. We want the angles of P to all be rational multiples of π , so that G is a finite group. The unfolding of P is the surface obtained by gluing together the reflected copies gP of P for every $g \in G$.

Unfolding a Table

Let G be the subgroup of O(2) generated by the reflections through the sides of P. We want the angles of P to all be rational multiples of π , so that G is a finite group. The unfolding of P is the surface obtained by gluing together the reflected copies gP of P for every $g \in G$.

The square table unfolds to a torus $\mathbb{R}^2/\mathbb{Z}^2$. All straight-line trajectories are given by the image of a straight line in \mathbb{R}^2 under the quotient $\mathbb{R}^2 \to \mathbb{R}^2/\mathbb{Z}^2$. Straight-line trajectories are therefore characterized by their slope: those of rational slope are periodic, and those of irrational slope are dense.

The Unfolded $\frac{\pi}{8} - \frac{3\pi}{8} - \frac{\pi}{2}$ Triangle

The triangular table with interior angles $\frac{\pi}{8}$, $\frac{3\pi}{8}$, and $\frac{\pi}{2}$ unfolds to the genus 2 surface given by identifying opposite sides of the regular octagon.

• Unfolding always produces an oriented surface endowed with a flat Riemannian metric, which comes from the fact that we can always draw the surface in the Euclidean plane.

- Unfolding always produces an oriented surface endowed with a flat Riemannian metric, which comes from the fact that we can always draw the surface in the Euclidean plane.
- There are some points at which the Riemannian metric is not well-defined: in the octagon above, every circle drawn around the single vertex of our octagonal surface has total angle ^{3π}/₄ · 8 = 6π.

- Unfolding always produces an oriented surface endowed with a flat Riemannian metric, which comes from the fact that we can always draw the surface in the Euclidean plane.
- There are some points at which the Riemannian metric is not well-defined: in the octagon above, every circle drawn around the single vertex of our octagonal surface has total angle ^{3π}/₄ · 8 = 6π.
- Notice also that if you take an upwards-pointing vector on the surface and slide it around, it remains pointing upward. That is to say, our surface have trivial holonomy.

- Unfolding always produces an oriented surface endowed with a flat Riemannian metric, which comes from the fact that we can always draw the surface in the Euclidean plane.
- There are some points at which the Riemannian metric is not well-defined: in the octagon above, every circle drawn around the single vertex of our octagonal surface has total angle ^{3π}/₄ · 8 = 6π.
- Notice also that if you take an upwards-pointing vector on the surface and slide it around, it remains pointing upward. That is to say, our surface have trivial holonomy.

Definition (Translation surface, first interpretation)

A translation surface is a closed oriented topological surface S, along with a flat Riemannian metric on $S \setminus \Sigma$ that has trivial holonomy, where Σ is a finite set of points in S.

• Let us consider for a moment a holomorphic 1-form ω on some Riemann surface X. On some coordinate chart U that does not include the zeroes of ω , we may write in coordinates $\omega = f(z)dz$, where f is a holomorphic function that vanishes nowhere on U.

- Let us consider for a moment a holomorphic 1-form ω on some Riemann surface X. On some coordinate chart U that does not include the zeroes of ω , we may write in coordinates $\omega = f(z)dz$, where f is a holomorphic function that vanishes nowhere on U.
- We may then always define a new coordinate $w = \int_{p}^{z} f(\zeta) d\zeta$, where p is some point in U. This gives

$$dw = \frac{\partial}{\partial z} \left(\int_{\rho}^{z} f(\zeta) d\zeta \right) dz = f(z) dz = \omega.$$

- Let us consider for a moment a holomorphic 1-form ω on some Riemann surface X. On some coordinate chart U that does not include the zeroes of ω , we may write in coordinates $\omega = f(z)dz$, where f is a holomorphic function that vanishes nowhere on U.
- We may then always define a new coordinate w = ∫_p^z f(ζ)dζ, where p is some point in U. This gives
 dw = ∂/∂z (∫_p^z f(ζ)dζ) dz = f(z)dz = ω.
- Consider now two overlapping coordinate charts U_1 and U_2 with coordinates w_1 and w_2 , respectively, where $\omega = dw_1$ on U_1 and $\omega = dw_2$ on U_2 . Then on $U_1 \cap U_2$, we have $dw_1 = \omega = dw_2$, and hence $w_2 = w_1 + C$ for some $C \in \mathbb{C}$.

- Let us consider for a moment a holomorphic 1-form ω on some Riemann surface X. On some coordinate chart U that does not include the zeroes of ω , we may write in coordinates $\omega = f(z)dz$, where f is a holomorphic function that vanishes nowhere on U.
- We may then always define a new coordinate w = ∫_p^z f(ζ)dζ, where p is some point in U. This gives
 dw = ∂/∂z (∫_p^z f(ζ)dζ) dz = f(z)dz = ω.
- Consider now two overlapping coordinate charts U_1 and U_2 with coordinates w_1 and w_2 , respectively, where $\omega = dw_1$ on U_1 and $\omega = dw_2$ on U_2 . Then on $U_1 \cap U_2$, we have $dw_1 = \omega = dw_2$, and hence $w_2 = w_1 + C$ for some $C \in \mathbb{C}$.
- Translations $w_2 = w_1 + C$ preserve the Euclidean metric on $\mathbb{C} = \mathbb{R}^2$, and preserve the notion of "upward-pointing-vector."

Definition (Translation surface, second interpretation)

A translation surface is a closed Riemann surface X, along with a holomorphic 1-form ω .

• Any translation surface can be drawn as a polygon with opposite sides identified, as we saw with the torus (a square) and the genus 2 surface (an octagon).

- Any translation surface can be drawn as a polygon with opposite sides identified, as we saw with the torus (a square) and the genus 2 surface (an octagon).
- Each side of such a polygon has a length r and points in some direction θ. We record these with a single complex parameter re^{iθ}.

- Any translation surface can be drawn as a polygon with opposite sides identified, as we saw with the torus (a square) and the genus 2 surface (an octagon).
- Each side of such a polygon has a length r and points in some direction θ. We record these with a single complex parameter re^{iθ}.

FIGURE 1.9. An octagon with opposite edges parallel may be specified by four complex numbers $v_1, v_2, v_3, v_4 \in \mathbb{C}$. (Not all choices give a valid octagon without self crossings, but there is an open set of valid choices.)

These polygonal pictures lie in the plane, and hence are acted upon by $\operatorname{GL}_2^+(\mathbb{R})$.

The points on a translation surface at which the Riemannian metric is not well-defined may equivalently be understood as the zeroes of the holomorphic 1-form. Counting multiplicity, there are always 2g - 2 of these, where g is the genus of the surface.

The points on a translation surface at which the Riemannian metric is not well-defined may equivalently be understood as the zeroes of the holomorphic 1-form. Counting multiplicity, there are always 2g - 2 of these, where g is the genus of the surface.

Definition (Stratum of translation surfaces)

Let $\kappa = (k_1, \ldots, k_n)$ satisfy $\sum k_j = 2g - 2$. We denote by $\mathcal{H}(\kappa)$ the topological space that parametrizes all translation surfaces with zeroes of multiplicities κ . We have seen that $\mathcal{H}(\kappa)$ admits a natural action $\operatorname{GL}_2^+(\mathbb{R}) \curvearrowright \mathcal{H}(\kappa)$.

The points on a translation surface at which the Riemannian metric is not well-defined may equivalently be understood as the zeroes of the holomorphic 1-form. Counting multiplicity, there are always 2g - 2 of these, where g is the genus of the surface.

Definition (Stratum of translation surfaces)

Let $\kappa = (k_1, \ldots, k_n)$ satisfy $\sum k_j = 2g - 2$. We denote by $\mathcal{H}(\kappa)$ the topological space that parametrizes all translation surfaces with zeroes of multiplicities κ . We have seen that $\mathcal{H}(\kappa)$ admits a natural action $\operatorname{GL}_2^+(\mathbb{R}) \curvearrowright \mathcal{H}(\kappa)$.

Theorem (Magic Wand of EMM + Theorem of Filip)

Any closed $\operatorname{GL}_2^+(\mathbb{R})$ -invariant subset of $\mathcal{H}(\kappa)$ is an algebraic \mathbb{C} -variety.

The Illumination Problem

• Light rays reflecting off mirrors follow the same rules as our billiards, so let us replace the billiards metaphor with light.

The Illumination Problem

- Light rays reflecting off mirrors follow the same rules as our billiards, so let us replace the billiards metaphor with light.
- In any room whose walls are mirrors, which points illuminate which other points?

The Illumination Problem

- Light rays reflecting off mirrors follow the same rules as our billiards, so let us replace the billiards metaphor with light.
- In any room whose walls are mirrors, which points illuminate which other points?

In 1958, Roger Penrose gave an example of a non-polygonal room in which no point illuminates every other.

In 1995 and 1997, respectively, Tokarsky and Castro constructed polygonal rooms where the indicated points do not illuminate each other.

Theorem (Lelièvre-Monteil-Weiss, 2014)

In a polygonal room P, whose angles are rational multiples of π , every point fails to illuminate at most finitely many other points.

Theorem (Lelièvre-Monteil-Weiss, 2014)

In a polygonal room P, whose angles are rational multiples of π , every point fails to illuminate at most finitely many other points.

Proof: Consider any such polygon P. We unfold P to a translation surface $(X_0, \omega_0) \in \mathcal{H}(\kappa)$ and choose any a point $x_0 \in X_0$. We consider x_0 as a marked point, or equivalently as a "zero" of ω_0 of multiplicity 0, so that $(X_0, \omega_0, x_0) \in \mathcal{H}(\kappa, 0)$.

Theorem (Lelièvre-Monteil-Weiss, 2014)

In a polygonal room P, whose angles are rational multiples of π , every point fails to illuminate at most finitely many other points.

Proof: Consider any such polygon P. We unfold P to a translation surface $(X_0, \omega_0) \in \mathcal{H}(\kappa)$ and choose any a point $x_0 \in X_0$. We consider x_0 as a marked point, or equivalently as a "zero" of ω_0 of multiplicity 0, so that $(X_0, \omega_0, x_0) \in \mathcal{H}(\kappa, 0)$. Define

 $\mathcal{N} = \{ (X, \omega, x, y) \in \mathcal{H}(\kappa, 0, 0) \mid x \text{ does not illuminate } y \}$ $\mathcal{X}_0 = \{ (X_0, \omega_0, x_0, y) \in \mathcal{H}(\kappa, 0, 0) \mid y \neq x_0 \}.$

Cofinite Illuminability in Rational Polygonal Rooms

$$\mathcal{N} = \{ (X, \omega, x, y) \in \mathcal{H}(\kappa, 0, 0) \mid x \text{ does not illuminate } y \}$$
$$\mathcal{X}_0 = \{ (X_0, \omega_0, x_0, y) \in \mathcal{H}(\kappa, 0, 0) \mid y \neq x_0 \}$$

If I have any (X, ω, x, y) in the complement of \mathcal{N} , then x does illuminate y. If I vary this picture slightly, or by any element of $\operatorname{GL}_2^+(\mathbb{R})$ at all, we see that x continues to illuminate y. Therefore \mathcal{N} is closed and $\operatorname{GL}_2^+(\mathbb{R})$ -invariant, and hence algebraic over \mathbb{C} by the Magic Wand and the Theorem of Filip.

Cofinite Illuminability in Rational Polygonal Rooms

$$\mathcal{N} = \{ (X, \omega, x, y) \in \mathcal{H}(\kappa, 0, 0) \mid x \text{ does not illuminate } y \}$$
$$\mathcal{X}_0 = \{ (X_0, \omega_0, x_0, y) \in \mathcal{H}(\kappa, 0, 0) \mid y \neq x_0 \}$$

If I have any (X, ω, x, y) in the complement of \mathcal{N} , then x does illuminate y. If I vary this picture slightly, or by any element of $\operatorname{GL}_2^+(\mathbb{R})$ at all, we see that x continues to illuminate y. Therefore \mathcal{N} is closed and $\operatorname{GL}_2^+(\mathbb{R})$ -invariant, and hence algebraic over \mathbb{C} by the Magic Wand and the Theorem of Filip.

Since \mathcal{X}_0 is a copy of $X_0 \setminus x_0$, it is also algebraic over \mathbb{C} . Notice $\mathcal{X}_0 \not\subset \mathcal{N}$ and dim_{\mathbb{C}} $\mathcal{X}_0 = 1$. Thus dim_{\mathbb{C}} $(\mathcal{X}_0 \cap \mathcal{N}) = 0$. Thus the set of $y \in X_0$ not illuminated by x_0 is a 0-dimensional variety, which is a finite set of points.

Image References

Fig. 2 Undated using the second secon

Forume 19. An ordered with composed edge penaltic with the order opposed edge penaltic C. (Wail debose give a without set) and ((;)) Surfaces and their orbit closures: An introduction for a broad audience. Pages 11 and 27. arXiv: 1411.1827.

"Illumination Problem." From *Mathworld* - A Wolfram Web Resource. http://mathworld.wolfram.com/IlluminationProblem.html.

19 / 20

Weisstein, Eric W.

- Zorich, Anton. *The Magic Wand Theorem of A. Eskin and M. Mirzakhani*. arXiv: 1502.05654.
- Lelièvre, S.; Monteil, T.; Weiss, B. *Everything is illuminated*. Geom. Topol. Vol 20, No. 3 (2016), 1737-1762. (arXiv: 1407.2975).
- Filip, Simion. *Splitting mixed Hodge structures over affine invariant submanifolds*. Ann. of Math. (2) 183 (2016), no. 2, 681-713. (arXiv: 1311.2350).