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1 Background

1.1 Complex Manifolds

Definition 1.1. A complex manifold of (complex) dimension n is a real 2n-dimensional smooth manifold
M with a maximal atlas of charts {ϕλ : M ⊇ Uλ → U ′λ ⊆ Cn}λ∈Λ, where Λ is some index set, such that the
coordinate transition functions are biholomorphisms.

Definition 1.2. A map f : M → N of complex manifolds of dimension m and n, respectively, is holomorphic
if for every p ∈M , there are charts ϕ : U → Cm about p and ψ : V → Cn with V ⊇ f(U) such that ψ◦f ◦ϕ−1

is holomorphic.

Definition 1.3. A holomorphic vector bundle is a vector bundle whose local trivializations are biholomor-
phisms.

Definition 1.4. Let M be a complex n-manifold. We fix the following notation:

• TRM is the tangent bundle to M as a real 2n-manifold. It is a real 2n-dimensional vector bundle with
an R-basis ∂

∂x1
, . . . , ∂

∂xn
, ∂
∂y1

, . . . , ∂
∂yn

at every point.

• TCM = TRM ⊗R C is the complexified tangent bundle to M . It is a complex 2n-dimensional vector
bundle with a C-basis ∂

∂x1
, . . . , ∂

∂xn
, ∂
∂y1

, . . . , ∂
∂yn

at every point. It contains TRM as the real 2n-
dimensional subbundle invariant pointwise under complex conjugation.

• TM is the holomorphic tangent bundle to M . It is a complex n-dimensional sub-vector bundle of TCM
with a C-basis ∂

∂z1
:= 1

2 ( ∂
∂x1
− i ∂

∂y1
), . . . , ∂

∂zn
:= 1

2 ( ∂
∂xn
− i ∂

∂yn
) at every point. The bundle TM is a

holomorphic vector bundle.
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1.2 Sheaves

In this section we follow the presentation of [4]. Let X be a topological space, and let Top(X) denote the
category of open sets of X, whose arrows U → V are containments U ⊇ V .

Definition 1.5. Let C be a subcategory (not necessarily full) of AbGrp (for example, Rings, Vectk,
C−Algebras). A sheaf of objects of C on a topological space X is a functor S : Top(X)→ C satisfying
properties (i) and (ii) below. Let us write resU,V := S (U → V ).

(i) (Gluing) If U =
⋃
i∈I Ui, where I is some index set, then given σi ∈ S (Ui) for each i, if

resUi,Ui∩Ujσi = resUj ,Ui∩Ujσi

for each i, j, then there is some σ ∈ S (U) such that resU,Uiσ = σi for each i.

(ii) (Identity) If U =
⋃
i∈I Ui, where I is some index set, and there are σ, σ′ ∈ S (U) such that resU,Uiσ =

resU,Uiσ
′ for each i, then σ = σ′.

Elements σ of S (U) are called sections of S over U , and the maps resU,V are called restriction maps, as
motivated by the example below. A homomorphism S → T of sheaves is simply a natural transformation
of functors S ⇒ T . We thus have a category ShC(X) of sheaves of objects of C on X, defined as a full
subcategory of CTop(X).

Example 1.6 (Sheaf of sections). Let π : E →M be a holomorphic vector bundle. Then SE : Top(M)→
VectC given by SE(U) = {σ : U → E | π ◦ σ = IdM , σ holomorphic} is a sheaf of C-vector spaces. For
a section σ ∈ SE(U), the section resU,V σ ∈ SE(V ) is just the restriction σ|V . In particular, ΘM (U) :=
STM (U) is the set of all holomorphic vector fields on U , andOM (U) := SM×C(U) is the set of all holomorphic
functions on U . In fact, OM is a sheaf of C-algebras.

Definition 1.7. Let X be a topological space, and let R be a sheaf of rings over X. A sheaf S : Top(X)→
AbGrp is called an R-module if for every U ∈ Top(X), there is an action R(U)×S (U)→ S (U) making
S (U) a R(U)-module, such that for every U ⊇ V , the diagram

R(U)×S (U) S (U)

R(V )×S (V ) S (V )

resU,V ×resU,V resU,V

commutes.

Note that ΘM is an OM -module. Indeed, for every holomorphic vector bundle E →M , the sheaf SE is
an OM -module. We will use this fact in §4.

Definition 1.8. Let X be a topological space and let S be any sheaf on X. Consider the full subcategory
Top(X)x of Top(X) whose objects are open neighborhoods of x ∈ X. Then Top(X)x is a filtered category,
i.e. a functor out of Top(X)x is a directed system. Let S |Top(X)x be the restriction of the functor S to
the subcategory Top(X)x. Then we define the stalk of S at x ∈ X to be the direct limit

Sx := lim−→S |Top(X)x .

By the universal property of direct limits, a homomorphism S → T of sheaves induces a morphism
Sx → Tx of stalks at every point x ∈ X.

Remark 1.9. Though much can be said of homological algebra with sheaves, suffice it to say that we call
a sequence 0→ R → S → T → 0 of sheaves (where 0 denotes the sheaf of functions to {0}) short exact if
the induced sequence 0x → Rx → Sx → Tx → 0x is short exact for every x ∈ X, whenever our category is
such that the latter statement is meaningful.

2



1.3 Čech Cohomology

In this section, we loosely follow the presentation of [2]. The Wikipedia page on Čech cohomology is also a
good reference. Let X be a topological space, let R be a ring, and let S be a sheaf R-modules.

Definition 1.10. The category Cov(X) of open covers of X has as objects open covers of X, and has an
arrow U → V whenever V is a refinement of U . Note that since any two covers have a common refinement,
Cov(X) is a filtered category, i.e., a functor out of Cov(X) is a directed system.

The idea of Čech cohomology is that an open cover is somewhat like a triangulation. More precisely,
to every open cover U of X, there is an associated simplicial complex N (U) called the nerve of U whose
0-faces are members of U , whose 1-faces are nonempty binary intersections of members of U , whose 2-faces
are nonempty trinary intersections of members of U , and so on. Of course, given an arbitrary open cover
U of X, the complex N (U) is not necessarily homotopy equivalent to X. One solution to this problem is
to develop a notion of a good open cover, i.e. one such that we do have N (U) ' X. We discuss a different
approach: we will develop a notion of cohomology groups Hk(U ,S ) for open covers U with coefficients in
S , and then we will take the direct limit of these groups along Cov(X). The idea is that as we refine a
cover further and further, its nerve will become a better and better approximation of X, even if it is not
necessarily ever homotopy equivalent to X.

Definition 1.11. Let U = {Ui}i∈I ∈ Cov(X), and let k ≥ 0. The set Ck(U ,S ) of k-cochains has as
elements collections {σi1···ik} of sections σi1···ik ∈ S (Ui1···ik) for each ordered k-tuple (i1, . . . , ik) of indices
such that Ui1···ik := Ui1 ∩ · · · ∩ Uik 6= ∅, where {σi1···ik} is required to be skew-symmetric in its indices:

σis(1)···is(k) = sign(s)σi1···ik , ∀s ∈ Sk.

Note that the formula

a{σi1···ik}+ b{τi1···ik} := {aσi1···ik + bτi1···ik}, a, b ∈ R

makes Ck(U ,S ) into an R-module.

We make C∗(U ,S ) into a cochain complex by defining the coboundary map

δ : Ck(U ,S )→ Ck+1(U ,S )

{σi1···ik} 7→ {τj1···jk+1
},

where

τj1···jk+1
:= −

k∑
`=1

(−1)`resUj1···j`−1j`+1···jk ,Uj1···jk+1
(σj1···j`−1j`+1···jk+1

).

A simple computation verifies that δ is indeed a coboundary map, so that we have a cochain complex

C0(U ,S )
δ−→ C1(U ,S )

δ−→ C2(U ,S )
δ−→ · · · .

We define Hk(U ,S ) to be the kth cohomology group of this cochain complex.
We now must show that Hk(−,S ) : Cov(X) → R −Mod is a well-defined functor. Then, the direct

limit
Ȟk(X,S ) := lim−→Hk(−,S )

exists, because R −Mod is a cocomplete category. We will call this direct limit the k-th Čech cohomology
group of X with respect to S .

Remark 1.12. Note that this construction is unnecessary for k = 0, since by the gluing and identity axioms
for sheaves, we have H0(U ,S ) = S (X) for any open cover U . Of course, this means that Ȟ0(X,S ) is the
limit of a constant functor, and so for every U we have Ȟ0(X,S ) = H0(U ,S ) = S (X).
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We have already defined the functor Hk(−,S ) on the objects of Cov(X), and so we now define its action
on the arrows of Cov(X). Let V = {Vj}j∈J be a refinement of U = {Ui}i∈I . Let f : J → I be any function
satisfying Vj ⊆ Uf(j). We then define ΠUV,f : Ck(U)→ Ck(V) by

ΠUV,f ({σi1···ik}) = {resUf(j1)···f(jk),Vj1···jk
(σf(j1)···f(jk))}.

It is again a simple computation to show that ΠUV,f descends to a map PUV,f : Hk(U ,S )→ Hk(U ,S ).

Lemma 1.13 (Lemma 3.2 of [2]). The map PUV,f is independent of the choice of f .

We therefore simply write PUV for PUV,f . Then we define

Hk(U → V,S ) := PUV .

Therefore we have a well-defined functor Hk(−,S ), and so the k-th Čech cohomology group of X with
respect to S is well-defined. Finally, we will require the following theorem in §4.

Theorem 1.14 (Theorem 3.7 of [2]). Given a short exact sequence 0 → R
f−→ S

g−→ T → 0 of sheaves on
a topological space X, we have a long exact sequence

Ȟ0(X,R)→ Ȟ0(X,S )→ Ȟ0(X,T )
δ∗−→ Ȟ1(X,R)→ · · · ,

where the formula for the connecting homomorphism δ∗ is as expected from the ordinary Snake Lemma for
cohomology with constant coefficients:

δ∗[τ ] = [δ{σi}],

where τ ∈ T (X), and {Ui}i∈I is a fine enough cover that we have a cochain {σi} ∈ C0({Ui}i∈I ,S ) satisfying
g(σi) = resX,Ui(τ), and [ · ] denotes the Čech cohomology class of a cocycle.

2 Definition of the Kodaira-Spencer Mapping

The goal of Kodaira-Spencer theory is to develop a notion of a family of complex manifolds that vary with
respect to some parameters w1, w2, . . . , wm, and then to say what it means to infinitesimally vary the complex
manifolds in the direction of each ∂

∂wi
. In this section we more or less follow the presentations found in [2]

and [3].

2.1 Complex Analytic Families

Definition 2.1. A complex analytic family of compact complex manifolds, more concisely a complex analytic
family, is a proper holomorphic map π : M → B from a complex (m + n)-manifold M to a complex m-
manifold B such that:

(i) The derivative (dπ)p : TpM → Tπ(p)B is surjective for every p ∈M .

(ii) The fiber π−1(b) is connected for every b ∈ B.

We call B the base or parameter space of the family, and any two fibers of π are called deformations of each
other. Since it loses us no generality, we will typically assume that B is connected and π is surjective.

Example 2.2 (Family of Elliptic Curves). Let H2 = {z ∈ C | Im(z) > 0}. The space H2×C has a Z2-action
given by (m,n).(τ, z) = (τ, z+m+nτ). Obviously this action is by biholomorphisms and preserves fibers of
the coordinate projection π̃ : H2 × C→ H2. Given any compact subset K ⊆ H2 × C, we have

inf
(m,n)∈Z2

(τ,z)∈K

dist((τ, z), (m,n).(τ, z)) = min({1} ∪ {|τ | | (τ, z) ∈ K}) > 0,
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and so this Z2-action is free and properly discontinuous. Therefore the quotient space M = (H2 × C)/Z2 is
a complex 2-manifold, and the projection π̃ descends to a map π : M → H2 with compact fibers. We claim
that π : M → H2 is a complex analytic family.

Since the Z2-action above is by biholomorphisms, π is a holomorphic map. Topologically, π : M → H2

is a trivial torus bundle over H2, and hence π is proper and satisfies (i) and (ii) above. Note that the fiber
π−1(τ) is the elliptic curve determined by the lattice generated by 1 and τ . Indeed, this family of elliptic
curves is “universal” in some sense: H2 is the Teichmüller space of the torus, and this family is the universal
family of marked elliptic curves [1].

Remark 2.3. The fact that the family from Example 2.2 is a smooth fiber bundle is not a coincidence.
Every complex analytic family is a smooth fiber bundle over its image ([2], Theorem 2.4). In particular,
if the total space M of the family is connected, then all the fibers are diffeomorphic to each other. It is
therefore only the complex manifold structure of the fibers that varies, not the diffeomorphism type.

2.2 Motivation for the Definition

Let π : M → B be a complex analytic family. Let ϕ : U → U ′ ⊆ Cm be a coordinate chart for the
base B, so that for some b0 ∈ B we have ϕ(b0) = (0, 0, . . . , 0). Since ϕ is a biholomorphism onto its
image, it is reasonable to abuse notation by referring to a point (w1, w2, . . . , wm) of U , when we really
mean a point b ∈ U so that ϕ(b) = (w1, w2, . . . , wm). We will adopt this convention. Given an index
set Λ, let us fix a covering {Uλ}λ∈Λ of π−1(U) by coordinate charts ϕλ : Uλ → U ′λ ⊆ Cm+n so that the
first m coordinates of ϕλ(p) are equal to ϕ(π(p)). That is to say, there is some ϕ′λ : Uλ → Cn so that
ϕλ = (ϕ ◦ π, ϕ′λ) : Ui → Cm × Cn = Cm+n. As with points (w1, w2, . . . , wm) ∈ U , we will abuse notation
by referring to a point (w1, w2, . . . , wm, z

λ
1 , z

λ
2 , . . . , z

λ
n) of Uλ, when we really mean a point x ∈ Uλ so that

ϕλ(x) = (w1, w2, . . . , wm, z
λ
1 , z

λ
2 , . . . , z

λ
n).

Given Uλ, Uµ such that Uλ ∩ Uµ 6= ∅, consider the coordinate transition function

fλµ = (gλµ1 , gλµ2 , . . . , gλµm , fλµ1 , fλµ2 , . . . , fλµn ) : ϕλ(Uλ ∩ Uµ)→ ϕµ(Uλ ∩ Uµ).

Since fλµ is a coordinate transition function, we have ϕµ = fλµ ◦ ϕλ. In particular, for 1 ≤ i ≤ n, we have
(recalling our abuse of notation):

zµi = fλµi (w1, w2, . . . , wm, z
λ
1 , z

λ
2 , . . . , z

λ
n). (1)

Notice that ϕλ and ϕµ do not differ in the first m coordinates: we have ϕλ = (ϕ◦π, ϕ′λ) and ϕµ = (ϕ◦π, ϕ′µ).

Therefore gλµi = IdC for each 1 ≤ i ≤ m. Therefore, only the functions fλµi are interesting.
Let F0 = π−1(0, 0, . . . , 0). As we vary, say, the first coordinate of (0, 0, . . . , 0), how does the complex

manifold structure of the fiber differ from the complex manifold structure of F0? For small enough w1 ∈ C,
notice that we have F0 ∩ Uλ 6= ∅ if and only if π−1(w1, 0, . . . , 0) ∩ Uλ 6= ∅, and F0 ∩ Uλ ∩ Uµ 6= ∅ if and
only if π−1(w1, 0, . . . , 0) ∩ Uλ ∩ Uµ 6= ∅. Let Λ′ ⊆ Λ be the set of λ such that F0 ∩ Uλ 6= ∅. Then the
complex structures on F0 and π−1(w1, 0, . . . , 0) are determined by the atlases of charts {ϕλ|F0∩Uλ}λ∈Λ′ and
{ϕλ|π−1(w0,0,...,0)∩Uλ}λ∈Λ′ , respectively. If we had chosen a fine enough open cover, we would even have that
F0 ∩Uλ and π−1(w1, 0, . . . , 0)∩Uλ are biholomorphic for each λ ∈ Λ′ (cf. §4.1(b) of [2]). Now we are in the
position to say: the difference between the complex structure on F0 and that on π−1(w1, 0, . . . , 0) is entirely
encoded in the data of the transition functions fλµ for λ, µ ∈ Λ′. It is therefore reasonable to say that the
derivatives {

∂fλµi
∂w1

(0, 0, . . . , 0, zλ1 , z
λ
2 , . . . , z

λ
n)

}i=1,...,n

λ,µ∈Λ′

give us first-order information about how the complex structures of the fibers of π vary as we walk from F0

towards π−1(w1, 0, . . . , 0).
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2.3 The Kodaira Spencer Mapping

We continue to use the notation laid out in the previous subsection.

Definition 2.4. The infinitesimal deformation of F0 in the wk direction is the 1-cochain of holomorphic
vector fields {

θ
(k)
λµ

}
∈ C1({F0 ∩ Uλ}λ∈Λ′ ,ΘF0

)

θ
(k)
λµ =

n∑
i=1

∂fλµi
∂wk

(0, 0, . . . , 0, zλ1 , z
λ
2 , . . . , z

λ
n)

∂

∂zµi
∈ ΘF0

(F0 ∩ Uλ ∩ Uµ).

Lemma 2.5. The cochain
{
θ

(k)
λµ

}
is a cocycle.

Proof. Consider Uα, Uβ , Uγ such that F0 ∩Uα ∩Uβ ∩Uγ 6= ∅. We will consider the restriction of θ
(k)
αγ to this

intersection, and we will everywhere elide the notation “res” for the restriction map of the sheaf ΘF0 . For
1 ≤ i ≤ n, Equation (1) gives us that

fαγi (0, . . . , 0, zα1 , . . . , z
α
n ) = zγi

= fβγi (0, . . . , 0, zβ1 , . . . , z
β
n)

= fβγi (0, 0, . . . , 0, fαβ1 (0, . . . , 0, zα1 , . . . , z
α
n ), . . . , fαβn (0, . . . , 0, zα1 , . . . , z

α
n )).

As shorthand, let us write z· = (z·1, z
·
2, . . . , z

·
n), and let 0 be the zero vector in Cm. Differentiating the first

and last parts of the above equation gives

∂fαγi
∂wk

(0, zα) =
∂fβγi
∂wk

(0, zβ) +

n∑
j=1

∂fβγ

∂zβj
(0, zβ) · ∂f

αβ

∂wk
(0, zα).

This gives the following identity of holomorphic vector fields on F0 ∩ Uα ∩ Uβ ∩ Uγ .

θ(k)
αγ =

n∑
i=1

∂fαγi
∂wk

(0, zα)
∂

∂zγi
=

n∑
i=1

∂fβγi
∂wk

(0, zβ)
∂

∂zγi
+

n∑
i=1

n∑
j=1

∂fβγ

∂zβj
(0, zβ) · ∂f

αβ

∂wk
(0, zα)

∂

∂zγi

=

n∑
i=1

∂fβγi
∂wk

(0, zβ)
∂

∂zγi
+

n∑
i=1

∂fαβ

∂wk
(0, zα)

∂

∂zβi

= θ
(k)
βγ + θ

(k)
αβ .

Thus,

0 =
{
θ

(k)
βγ − θ

(k)
αγ + θ

(k)
αβ

}
= δ

{
θ

(k)
λµ

}
,

and so
{
θ

(k)
λµ

}
is a cocycle, as desired.

Let us denote by
[
θ

(k)
λµ

]
the Čech cohomology class determined by

{
θ

(k)
λµ

}
. A direct computation shows

that this cohomology class is independent of the choice of open covering {Uλ}λ∈Λ′ used to define θ
(k)
λµ (see

§4.2(a) of [2]). We now define the Kodaira-Spencer mapping.

Definition 2.6. The linear map

ρ0 : T0B → Ȟ1(F0,ΘF0
)

m∑
k=1

ak
∂

∂wk
7→

m∑
k=1

ak

[
θ

(k)
λµ

]
is called the Kodaira-Spencer mapping.
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Of course, the point (0, 0, . . . , 0) is not at all special in what we have done, it is merely convenient. We
therefore have for every b = (w1, w2, . . . , wm) ∈ U and Fb = π−1(b) a Kodaira-Spencer mapping

ρb : TbB → Ȟ1(Fb,ΘFb)
m∑
k=1

ak
∂

∂wk
7→

m∑
k=1

ak

[
θ

(k)
λµ (b)

]
,

where

θ
(k)
λµ (b) =

n∑
i=1

∂fλµi
∂wk

(w1, w2, . . . , wm, z
λ
1 , z

λ
2 , . . . , z

λ
n)

∂

∂zµi
∈ ΘFb(Fb ∩ Uλ ∩ Uµ).

3 Local Triviality of Families

In this section, we mostly follow [2].

If
[
θ

(k)
λµ (b)

]
really does represent first-order information about how the complex structures of the fibers

of π vary, then we might expect that
[
θ

(k)
λµ (b)

]
= 0 for all b ∈ B and 1 ≤ k ≤ m if and only if the family

π : M → B is in some sense “locally trivial.” In fact, this is not true in general, but is only true given an
additional assumption. We first formulate what it means to be locally trivial.

Definition 3.1. A complex analytic family π : M → B is called locally trivial if for every b0 ∈ B, there is an
open neighborhood U of b0 and a biholomorphism ϕ : π−1(U)→ π−1(b0)×U taking π−1(b) biholomorphically
onto π−1(b0)× {b} for every b ∈ U .

It is obvious that for a family of the form F × B → B, where F is a complex n-manifold, we have[
θ

(k)
λµ (b)

]
= 0 for all b ∈ B and 1 ≤ k ≤ m. Therefore

[
θ

(k)
λµ (b)

]
= 0 for all b ∈ B and 1 ≤ k ≤ m whenever

π : M → B is a locally trivial family. To get the converse, we need an assumption on the dimensions of the
cohomology groups of the fibers of our family.

Theorem 3.2 (Theorem 4.6 of [2]). Let π : M → B be a complex analytic family with fibers Fb = π−1(b).

If dim Ȟ1(Fb,ΘFb) is independent of b, and if
[
θ

(k)
λµ (b)

]
= 0 for all b ∈ B and 1 ≤ k ≤ m, then π : M → B

is locally trivial.

We do have some a priori control on dim Ȟ1(Fb,ΘFb) though, thanks to the following theorem.

Theorem 3.3 (Theorem 4.4 of [2]). Let π : M → B be a complex analytic family with fibers Fb = π−1(b).
Then dim Ȟ1(Fb,ΘFb) is an upper semicontinuous function of b.

4 The Kodaira-Spencer Mapping as a Connecting Homomorphism

Though we have developed the Kodaira-Spencer mapping from the ground up in order to emphasize that
it is what one would intuitively expect an infinitesimal deformation of complex structure to look like, the
mapping also simply pops out of a completely natural short exact sequence of sheaves that arises from the
projection map π : M → B. Let π : M → B be a complex analytic family, let b ∈ B, and let Fb = π−1(b).
We have a fiberwise linear map (or, if you like, a vector bundle morphism covering the map Fb → {b})

dπ : TM |Fb → TbB

v 7→ dπ(v).

Lemma 4.1. The map dπ : TMFb → TbB induces a short exact sequence of OFb-modules

0→ ΘFb → STM |Fb
dπ−→ TbB ⊗OFb → 0,

where TbB ⊗OFb is the sheaf such that (TbB ⊗OFb)(U) = TbB ⊗C OFb(U) for every U ∈ Top(Fb).
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Proof. Exactness at ΘFb : We have TpFb ⊆ TpM for every p ∈ Fb, so a germ of holomorphic vector fields at
p is at the same time a germ of sections of TM |Fb .

Exactness at TbB ⊗ OFb : We know by Remark 2.3 that π : M → B is a fiber bundle, and so there is a
small enough neighborhood U ⊆M about any p ∈ Fb, biholomorphic to some U ′ × U ′′ ⊆ Cm × Cn, so that
π|U is just projection onto the first m coordinates. Therefore we may express any germ of sections of TM |Fb
at p ∈ Fb as

∑m
k=1[ak] ∂

∂wk
+
∑n
i=1[bk] ∂

∂zi
, where [ak], [bi] ∈ OFp for each k, i. We have

dπ

(
m∑
k=1

[ak]
∂

∂wk
+

n∑
i=1

[bk]
∂

∂zi

)
=

m∑
k=1

∂

∂wk
⊗ [ak],

and hence (STM |Fb )p
dπ−→ (TbB ⊗OFb)p is surjective for every p ∈ Fb.

Exactness at STM |Fb : The above formula for dπ shows that (ΘFb)p is precisely the kernel of dπ at every
p ∈ Fb.

Remark 4.2. Since Fb is compact, it follows from the Maximum Modulus Principle that OFb(Fb) ∼= C.
Therefore, by Remark 1.12, Ȟ0(Fb, TbB ⊗OFb) ∼= TbB.

By Theorem 1.14, we have a long exact sequence

Ȟ0(Fb,ΘFb)→ Ȟ0(Fb,STM |Fb )→ TbB
δ∗−→ Ȟ1(Fb,ΘFb)→ · · · ,

where for each 1 ≤ k ≤ m,

∂

∂wk

δ∗7−→ [δ{σλ}], σλ ∈ STM |Fb (Fb ∩ Uλ), dπ(σλ) =
∂

∂wk
,

where {Uλ}λ∈Λ′ is some satisfactory open covering of M as in §2.2. Note that σλ is not guaranteed to be

unique, but certainly
(

∂
∂wk

)
λ

:= d
(
ϕ−1
λ

) (
∂
∂wk

)
works as a choice for σλ. Then we have δ{σλ} = {τλµ},

where

τλµ = σλ − σµ

=

(
∂

∂wk

)
λ

−
(

∂

∂wk

)
µ

=

(
∂wk
∂wk

(
∂

∂wk

)
µ

+

n∑
i=1

∂fλµi
∂wk

∂

∂zµi

)
−
(

∂

∂wk

)
µ

=

n∑
i=1

∂fλµi
∂wk

∂

∂zµi

= θ
(k)
λµ (b).

We have therefore proved the following theorem (cf. e.g. Proposition 1 of [5] and its proof).

Theorem 4.3. Given a complex analytic family π : M → B, for each fiber π−1(b) = Fb, the Kodaira-Spencer
mapping ρb is the connecting homomorphism in the long exact sequence

Ȟ0(Fb,ΘFb)→ Ȟ0(Fb,STM |Fb )→ Ȟ0(Fb, TbB ⊗OFb) ∼= TbB
δ∗=ρb−−−−→ Ȟ1(Fb,ΘFb)→ · · · .
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