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Matrix Polynomials

Definition: Matrix Polynomials

A matrix polynomial P(λ) is a matrix whose entries are
polynomials over a field F, or equivalently, is a polynomial whose
coefficients are matrices over F.

[
2λ2 + 17 λ
−λ 17

]
=

[
2 0
0 0

]
λ2 +

[
0 1
−1 0

]
λ+

[
17 0
0 17

]
.

Definition: Eigenvalues

Given a matrix polynomial P(λ) = Akλ
k + · · ·+ A0, an element

λ0 ∈ F is a finite eigenvalue of P if rankP(λ0) < rankP(λ). If
rankAk < rankP(λ), then P(λ) is said to have an eigenvalue at
infinity.
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Motivation

Definition: Complete Polynomial Eigenproblem

• The eigenstructure of P(λ) consists of all the eigenvalues
along with data about their multiplicities.

• The singular structure of P(λ) contains information about
degrees of polynomial bases of the nullspaces of P(λ).

The calculation of these structures for some P(λ) is called the
Complete Polynomial Eigenproblem (CPE).

Many engineering applications demand accurate solutions to the
CPE. In particular, this problem arises from systems of ODEs, and
from discretizations of PDEs, that are considered in the analysis of
vibrations.
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Linearizations

Definition: Linearization

• A linearization of P(λ) ∈ F[λ]m×n is a matrix pencil L(λ) that
shares its finite eigenstructure.

• A strong linearization of P(λ) shares its eigenvalue at infinity.

Good linearizations:

• are simple to construct and have a block structure that is a
template

• have good numerical properties: conditioning, backward errors

• preserve the structure of P(λ) (symmetric, unitary, etc.)
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Fiedler Pencils

Definition: Fiedler pencil (Fiedler, 2003; Antoniou,
Vologiannidis, 2004)

A Fiedler pencil for P(λ) =
∑k

i=0 Aiλ
i is a matrix

F (λ) = M−kλ−Mq ∈ F[λ]nk×nk ,

where Mq = Mq(0)Mq(1) · · ·Mq(k−1) and e.g. Mi for 0 < i < k is
given by:

Mi :=


In(k−i−1)

−Ai In
In 0

In(i−1)

 (elementary matrices)

• Fiedler pencils are always strong linearizations of P(λ).



Fiedler Pencils

Definition: Fiedler pencil (Fiedler, 2003; Antoniou,
Vologiannidis, 2004)

A Fiedler pencil for P(λ) =
∑k

i=0 Aiλ
i is a matrix

F (λ) = M−kλ−Mq ∈ F[λ]nk×nk ,

where Mq = Mq(0)Mq(1) · · ·Mq(k−1) and e.g. Mi for 0 < i < k is
given by:

Mi :=


In(k−i−1)

−Ai In
In 0

In(i−1)

 (elementary matrices)

• Fiedler pencils are always strong linearizations of P(λ).



Fiedler Pencils

Example:

Let P(λ) be of degree 5 and q = (2, 3, 4, 0, 1). Then the Fiedler
pencil is: 

λA5 + A4 −In 0 0 0
A3 λIn −In 0 0
A2 0 λIn A1 −In
−In 0 0 λIn 0

0 0 0 A0 λIn





Generalized Fiedler Pencils with Repetition

Definition: GFPR (Bueno, Dopico, Furtado, Rychnovsky,
2015)

Given a square matrix polynomial P(λ), a GFPR for P(λ) is a
pencil of the form

M`q(X )M`z (Y)(λMz −Mq)Mrq(Z)Mrz (W),

where e.g. Mrq(Z) = Mrq(0)(Z0)Mrq(1)(Z1) · · ·Mrq(m)(Zm) and
Mi (Zj) for 0 < i < k is given by

Mi (Zj) :=


In(k−i−1)

Zj In
In 0

In(i−1)

 . (elementary matrices)

• GFPRs are almost always strong linearizations of P(λ).
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Generalized Fiedler Pencils with Repetition

Example:

Let P(λ) be a polynomial of degree 5. A GFPR for P(λ) is:
A4 + λA5 −Z3 −Z2 −In 0

A3 λZ3 − In λZ2 λIn 0
A2 λIn A1 0 −In
−In 0 λIn 0 0

0 0 A0 0 λIn





A Canonical Form for Fiedler Pencils

Theorem (Dopico, Lawrence, Pérez, Van Dooren, 2016)

If F (λ) is a Fiedler pencil for the matrix polynomial P(λ), then
through block row and column permutations, F (λ) can be
expressed in the canonical form

F (λ) 

[
M KT

2

K1 0

]
, (BMBP)

where Ki for i = 1, 2 is of the form
−In λIn

−In λIn
. . .

. . .

−In λIn

 ∈ F[λ]pin×(pi+1)n,

and M has a staircase-shaped pattern with the blocks

λAk + Ak−1,Ak−2, . . . ,A0.



A Canonical Form for Fiedler Pencils

Example:

Let P(λ) be of degree 5 and q = (2, 3, 4, 0, 1). Then the Fiedler
pencil is: 

λA5 + A4 −In 0 0 0
A3 λIn −In 0 0
A2 0 λIn A1 −In
−In 0 0 λIn 0

0 0 0 A0 λIn



Permute 


λA5 + A4 0 −In 0 0

A3 0 λIn −In 0
A2 A1 0 λIn −In
0 A0 0 0 λIn
−In λIn 0 0 0





Λ-dual Pencils

• The Ki blocks are “dual” to
[
λpi λpi−1 · · · 1

]
in the sense

that 
−In λIn

−In λIn
. . .

. . .

−In λIn

 ·

λpi

λpi−1

...
1

 = 0.

• The M block allows recovery of P(λ):

[
λ3 λ2 λ 1

]
·


λA5 + A4 0

A3 0
A2 A1

0 A0

·[λ1
]

= A5λ
5+· · ·+A1λ+A0.

• We say that a pencil of the form[
M KT

2

K1 0

]
with these duality and recovery conditions is a Λ-dual pencil
for P(λ).
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Λ-dual Pencils

Theorem (Dopico, Lawrence, Pérez, Van Dooren; B., S., Z.,
2016)

A Λ-dual pencil [
M KT

2

K1 0

]
for P(λ) is a strong linearization of P(λ) if

• The linear coefficient matrices of K1(λ) and K2(λ) have full
rank.

• For every λ0 ∈ F, the matrices K1(λ0) and K2(λ0) have full
rank.



A Canonical Form for GFPRs

Theorem (B., S., Z., 2016)

If G (λ) is a GFPR for the matrix polynomial P(λ), then through
block row and column permutations, G (λ) can be expressed in the
canonical form

G (λ) 

[
M KT

2

K1 0

]
, (Λ-Dual Pencil)

where for certain p1, p2,

Ki ·
[
λpi λpi−1 · · · 1

]T
= 0, i = 1, 2,

and [
λp2 λp2−1 · · · 1

]
·M ·

[
λp1 λp1−1 · · · 1

]T
= P(λ).



A Canonical Form for GFPRs

Example: 
A4 + λA5 −Z3 −Z2 −In 0

A3 λZ3 − In λZ2 λIn 0
A2 λIn A1 0 −In
−In 0 λIn 0 0

0 0 A0 0 λIn



Permute 


A4 + λA5 −Z2 −Z3 −In 0

A3 λZ2 λZ3 − In λIn 0
A2 A1 λIn 0 −In
0 A0 0 0 λIn
−In λIn 0 0 0





Example: Canonical form for (λM−5 −M2,3,4,0,1)M3(Z )


λA5 + A4 −In 0 0 0

A3 λIn −In 0 0
A2 0 λIn A1 −In
−In 0 0 λIn 0

0 0 0 A0 λIn




In 0 0 0 0
0 Z In 0 0
0 In 0 0 0
0 0 0 In 0
0 0 0 0 In



λA5 + A4 −Z −In 0 0

A3 λZ − In λIn 0 0
A2 λIn 0 A1 −In
−In 0 0 λIn 0

0 0 0 A0 λIn



Permute 


λA5 + A4 0 −Z −In 0

A3 0 λZ − In λIn 0
A2 A1 λIn 0 −In
0 A0 0 0 λIn
−In λIn 0 0 0





Conclusions and Future Work

• Unification of Fiedler-like pencils under a canonical form.
(Goodbye GFPRs)

• A unified search for structure-preserving linearizations.

• Analysis of numerical properties of this larger class of pencils

• Linearizations for matrix polynomials in nonmonomial bases

Monomial Basis: 1, λ, λ2, λ3, . . .
Chebyshev Basis: 1, 2λ, 4λ2 − 1, 8λ3 − 4λ, . . .
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