A Unified Approach to Fiedler-Like Pencils

Rafael M. Saavedra and Bradley Zykoski
Mentor: Maribel Bueno

UC Santa Barbara Math Summer Research Program for Undergraduates

> Young Mathematicians Conference 2016
> August 20, 2016

Matrix Polynomials

Definition: Matrix Polynomials

A matrix polynomial $P(\lambda)$ is a matrix whose entries are polynomials over a field \mathbb{F}, or equivalently, is a polynomial whose coefficients are matrices over \mathbb{F}.

$$
\left[\begin{array}{cc}
2 \lambda^{2}+17 & \lambda \\
-\lambda & 17
\end{array}\right]=\left[\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right] \lambda^{2}+\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right] \lambda+\left[\begin{array}{cc}
17 & 0 \\
0 & 17
\end{array}\right] .
$$

Definition: Eigenvalues
Given a matrix polynomial $P(\lambda)=A_{k} \lambda^{k}+\cdots+A_{0}$, an element $\lambda_{0} \in \overline{\mathbb{F}}$ is a finite eigenvalue of P if $\operatorname{rank} P\left(\lambda_{0}\right)<\operatorname{rank} P(\lambda)$. If rank $A_{k}<\operatorname{rank} P(\lambda)$, then $P(\lambda)$ is said to have an eigenvalue at infinity.

Matrix Polynomials

Definition: Matrix Polynomials

A matrix polynomial $P(\lambda)$ is a matrix whose entries are polynomials over a field \mathbb{F}, or equivalently, is a polynomial whose coefficients are matrices over \mathbb{F}.

$$
\left[\begin{array}{cc}
2 \lambda^{2}+17 & \lambda \\
-\lambda & 17
\end{array}\right]=\left[\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right] \lambda^{2}+\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right] \lambda+\left[\begin{array}{cc}
17 & 0 \\
0 & 17
\end{array}\right]
$$

Definition: Eigenvalues

Given a matrix polynomial $P(\lambda)=A_{k} \lambda^{k}+\cdots+A_{0}$, an element $\lambda_{0} \in \overline{\mathbb{F}}$ is a finite eigenvalue of P if rank $P\left(\lambda_{0}\right)<\operatorname{rank} P(\lambda)$. If rank $A_{k}<\operatorname{rank} P(\lambda)$, then $P(\lambda)$ is said to have an eigenvalue at infinity.

Motivation

Definition: Complete Polynomial Eigenproblem

- The eigenstructure of $P(\lambda)$ consists of all the eigenvalues along with data about their multiplicities.
- The singular structure of $P(\lambda)$ contains information about degrees of polynomial bases of the nullspaces of $P(\lambda)$.
The calculation of these structures for some $P(\lambda)$ is called the Complete Polynomial Eigenproblem (CPE).

Many engineering applications demand accurate solutions to the
CPE. In particular, this problem arises from systems of ODEs, and from discretizations of PDEs, that are considered in the analysis of vibrations.

Motivation

Definition: Complete Polynomial Eigenproblem

- The eigenstructure of $P(\lambda)$ consists of all the eigenvalues along with data about their multiplicities.
- The singular structure of $P(\lambda)$ contains information about degrees of polynomial bases of the nullspaces of $P(\lambda)$.
The calculation of these structures for some $P(\lambda)$ is called the Complete Polynomial Eigenproblem (CPE).

Many engineering applications demand accurate solutions to the CPE. In particular, this problem arises from systems of ODEs, and from discretizations of PDEs, that are considered in the analysis of vibrations.

Linearizations

Definition: Linearization

- A linearization of $P(\lambda) \in \mathbb{F}[\lambda]^{m \times n}$ is a matrix pencil $\mathcal{L}(\lambda)$ that shares its finite eigenstructure.
- A strong linearization of $P(\lambda)$ shares its eigenvalue at infinity.

Good linearizations:

- are simple to construct and have a block structure that is a template
- have good numerical properties: conditioning, backward errors
- preserve the structure of $P(\lambda)$ (symmetric, unitary, etc.)

Linearizations

Definition: Linearization

- A linearization of $P(\lambda) \in \mathbb{F}[\lambda]^{m \times n}$ is a matrix pencil $\mathcal{L}(\lambda)$ that shares its finite eigenstructure.
- A strong linearization of $P(\lambda)$ shares its eigenvalue at infinity.

Good linearizations:

- are simple to construct and have a block structure that is a template
- have good numerical properties: conditioning, backward errors - preserve the structure of $P(\lambda)$ (symmetric, unitary, etc.)

Linearizations

Definition: Linearization

- A linearization of $P(\lambda) \in \mathbb{F}[\lambda]^{m \times n}$ is a matrix pencil $\mathcal{L}(\lambda)$ that shares its finite eigenstructure.
- A strong linearization of $P(\lambda)$ shares its eigenvalue at infinity.

Good linearizations:

- are simple to construct and have a block structure that is a template
- have good numerical properties: conditioning, backward errors
- preserve the structure of $P(\lambda)$ (symmetric, unitary, etc.)

Linearizations

Definition: Linearization

- A linearization of $P(\lambda) \in \mathbb{F}[\lambda]^{m \times n}$ is a matrix pencil $\mathcal{L}(\lambda)$ that shares its finite eigenstructure.
- A strong linearization of $P(\lambda)$ shares its eigenvalue at infinity.

Good linearizations:

- are simple to construct and have a block structure that is a template
- have good numerical properties: conditioning, backward errors
- preserve the structure of $P(\lambda)$ (symmetric, unitary, etc.)

Fiedler Pencils

Definition: Fiedler pencil (Fiedler, 2003; Antoniou, Vologiannidis, 2004)

A Fiedler pencil for $P(\lambda)=\sum_{i=0}^{k} A_{i} \lambda^{i}$ is a matrix

$$
F(\lambda)=M_{-k} \lambda-M_{q} \in \mathbb{F}[\lambda]^{n k \times n k}
$$

where $M_{q}=M_{q(0)} M_{q(1)} \cdots M_{q(k-1)}$ and e.g. M_{i} for $0<i<k$ is given by:

$$
M_{i}:=\left[\begin{array}{c|cc|c}
I_{n(k-i-1)} & & & \\
\hline & -A_{i} & I_{n} & \\
& I_{n} & 0 & \\
\hline & & & I_{n(i-1)}
\end{array}\right]
$$

(elementary matrices)

Fiedler Pencils

Definition: Fiedler pencil (Fiedler, 2003; Antoniou, Vologiannidis, 2004)

A Fiedler pencil for $P(\lambda)=\sum_{i=0}^{k} A_{i} \lambda^{i}$ is a matrix

$$
F(\lambda)=M_{-k} \lambda-M_{q} \in \mathbb{F}[\lambda]^{n k \times n k}
$$

where $M_{q}=M_{q(0)} M_{q(1)} \cdots M_{q(k-1)}$ and e.g. M_{i} for $0<i<k$ is given by:

$$
M_{i}:=\left[\begin{array}{c|cc|c}
I_{n(k-i-1)} & & & \\
\hline & -A_{i} & I_{n} & \\
& I_{n} & 0 & \\
\hline & & & I_{n(i-1)}
\end{array}\right]
$$

(elementary matrices)

- Fiedler pencils are always strong linearizations of $P(\lambda)$.

Fiedler Pencils

Example:

Let $P(\lambda)$ be of degree 5 and $q=(2,3,4,0,1)$. Then the Fiedler pencil is:

$$
\left[\begin{array}{ccccc}
\lambda A_{5}+A_{4} & -I_{n} & 0 & 0 & 0 \\
A_{3} & \lambda I_{n} & -I_{n} & 0 & 0 \\
A_{2} & 0 & \lambda I_{n} & A_{1} & -I_{n} \\
-I_{n} & 0 & 0 & \lambda I_{n} & 0 \\
0 & 0 & 0 & A_{0} & \lambda I_{n}
\end{array}\right]
$$

Generalized Fiedler Pencils with Repetition

Definition: GFPR (Bueno, Dopico, Furtado, Rychnovsky, 2015)

Given a square matrix polynomial $P(\lambda)$, a GFPR for $P(\lambda)$ is a pencil of the form

$$
M_{\ell_{q}}(\mathcal{X}) M_{\ell_{z}}(\mathcal{Y})\left(\lambda M_{z}-M_{q}\right) M_{r_{q}}(\mathcal{Z}) M_{r_{z}}(\mathcal{W}),
$$

where e.g. $M_{\mathbf{r}_{q}}(\mathcal{Z})=M_{\mathbf{r}_{q}(0)}\left(Z_{0}\right) M_{\mathbf{r}_{q}(1)}\left(Z_{1}\right) \cdots M_{\mathbf{r}_{q}(m)}\left(Z_{m}\right)$ and $M_{i}\left(Z_{j}\right)$ for $0<i<k$ is given by

$$
M_{i}\left(Z_{j}\right):=\left[\begin{array}{l|ll|l}
I_{n(k-i-1)} & & & \\
& Z_{j} & I_{n} & \\
& I_{n} & 0 & \\
\hline & & & I_{n(i-1)}
\end{array}\right] . \quad \text { (elementary matrices) }
$$

Generalized Fiedler Pencils with Repetition

Definition: GFPR (Bueno, Dopico, Furtado, Rychnovsky, 2015)

Given a square matrix polynomial $P(\lambda)$, a GFPR for $P(\lambda)$ is a pencil of the form

$$
M_{\ell_{q}}(\mathcal{X}) M_{\ell_{z}}(\mathcal{Y})\left(\lambda M_{z}-M_{q}\right) M_{r_{q}}(\mathcal{Z}) M_{r_{z}}(\mathcal{W}),
$$

where e.g. $M_{\mathbf{r}_{q}}(\mathcal{Z})=M_{\mathbf{r}_{q}(0)}\left(Z_{0}\right) M_{\mathbf{r}_{q}(1)}\left(Z_{1}\right) \cdots M_{\mathbf{r}_{q}(m)}\left(Z_{m}\right)$ and $M_{i}\left(Z_{j}\right)$ for $0<i<k$ is given by

$$
M_{i}\left(Z_{j}\right):=\left[\begin{array}{l|lll}
I_{n(k-i-1)} & & & \\
\hline & Z_{j} & I_{n} & \\
& I_{n} & 0 & \\
\hline & & & I_{n(i-1)}
\end{array}\right] . \quad \text { (elementary matrices) }
$$

- GFPRs are almost always strong linearizations of $P(\lambda)$.

Generalized Fiedler Pencils with Repetition

Example:

Let $P(\lambda)$ be a polynomial of degree 5. A GFPR for $P(\lambda)$ is:

$$
\left[\begin{array}{ccccc}
A_{4}+\lambda A_{5} & -Z_{3} & -Z_{2} & -I_{n} & 0 \\
A_{3} & \lambda Z_{3}-I_{n} & \lambda Z_{2} & \lambda I_{n} & 0 \\
A_{2} & \lambda I_{n} & A_{1} & 0 & -I_{n} \\
-I_{n} & 0 & \lambda I_{n} & 0 & 0 \\
0 & 0 & A_{0} & 0 & \lambda I_{n}
\end{array}\right]
$$

A Canonical Form for Fiedler Pencils

Theorem (Dopico, Lawrence, Pérez, Van Dooren, 2016)

If $F(\lambda)$ is a Fiedler pencil for the matrix polynomial $P(\lambda)$, then through block row and column permutations, $F(\lambda)$ can be expressed in the canonical form

$$
F(\lambda) \rightsquigarrow\left[\begin{array}{c|c}
M & K_{2}^{T} \tag{BMBP}\\
\hline K_{1} & 0
\end{array}\right],
$$

where K_{i} for $i=1,2$ is of the form

$$
\left[\begin{array}{ccccc}
-I_{n} & \lambda I_{n} & & & \\
& -I_{n} & \lambda I_{n} & & \\
& & \ddots & \ddots & \\
& & & -I_{n} & \lambda I_{n}
\end{array}\right] \in \mathbb{F}[\lambda]^{p_{i} n \times\left(p_{i}+1\right) n}
$$

and M has a staircase-shaped pattern with the blocks

$$
\lambda A_{k}+A_{k-1}, A_{k-2}, \ldots, A_{0} .
$$

A Canonical Form for Fiedler Pencils

Example:

Let $P(\lambda)$ be of degree 5 and $q=(2,3,4,0,1)$. Then the Fiedler pencil is:
$\underset{\sim}{\text { Permute }}$$\left[\begin{array}{ccccc}\lambda A_{5}+A_{4} & -I_{n} & 0 & 0 & 0 \\ A_{3} & \lambda I_{n} & -I_{n} & 0 & 0 \\ A_{2} & 0 & \lambda I_{n} & A_{1} & -I_{n} \\ -I_{n} & 0 & 0 & \lambda I_{n} & 0 \\ 0 & 0 & 0 & A_{0} & \lambda I_{n}\end{array}\right]$

Λ-dual Pencils

- The K_{i} blocks are "dual" to $\left[\begin{array}{llll}\lambda^{p_{i}} & \lambda^{p_{i}-1} & \cdots & 1\end{array}\right]$ in the sense that

$$
\left[\begin{array}{ccccc}
-I_{n} & \lambda I_{n} & & & \\
& -I_{n} & \lambda I_{n} & & \\
& & \ddots & \ddots & \\
& & & -I_{n} & \lambda I_{n}
\end{array}\right] \cdot\left[\begin{array}{c}
\lambda^{p_{i}} \\
\lambda^{p_{i}-1} \\
\vdots \\
1
\end{array}\right]=0 .
$$

- The M block allows recovery of $P(\lambda)$:

- We say that a pencil of the form
$\left[\begin{array}{c|c}M & K_{2}^{T} \\ \hline K_{1} & 0\end{array}\right]$
with these duality and recovery conditions is a Λ-dual pencil for $P(\lambda)$.

Λ-dual Pencils

- The K_{i} blocks are "dual" to $\left[\begin{array}{llll}\lambda^{p_{i}} & \lambda^{p_{i}-1} & \cdots & 1\end{array}\right]$ in the sense that

$$
\left[\begin{array}{ccccc}
-I_{n} & \lambda I_{n} & & & \\
& -I_{n} & \lambda I_{n} & & \\
& & \ddots & \ddots & \\
& & & -I_{n} & \lambda I_{n}
\end{array}\right] \cdot\left[\begin{array}{c}
\lambda^{p_{i}} \\
\lambda^{p_{i}-1} \\
\vdots \\
1
\end{array}\right]=0 .
$$

- The M block allows recovery of $P(\lambda)$:

$$
\left[\begin{array}{llll}
\lambda^{3} & \lambda^{2} & \lambda & 1
\end{array}\right] \cdot\left[\begin{array}{cc}
\lambda A_{5}+A_{4} & 0 \\
A_{3} & 0 \\
A_{2} & A_{1} \\
0 & A_{0}
\end{array}\right] \cdot\left[\begin{array}{c}
\lambda \\
1
\end{array}\right]=A_{5} \lambda^{5}+\cdots+A_{1} \lambda+A_{0}
$$

- We say that a pencil of the form

^-dual Pencils

- The K_{i} blocks are "dual" to $\left[\begin{array}{llll}\lambda^{p_{i}} & \lambda^{p_{i}-1} & \cdots & 1\end{array}\right]$ in the sense that

$$
\left[\begin{array}{ccccc}
-I_{n} & \lambda I_{n} & & & \\
& -I_{n} & \lambda I_{n} & & \\
& & \ddots & \ddots & \\
& & & -I_{n} & \lambda I_{n}
\end{array}\right] \cdot\left[\begin{array}{c}
\lambda^{p_{i}} \\
\lambda^{p_{i}-1} \\
\vdots \\
1
\end{array}\right]=0 .
$$

- The M block allows recovery of $P(\lambda)$:

$$
\left[\begin{array}{llll}
\lambda^{3} & \lambda^{2} & \lambda & 1
\end{array}\right] \cdot\left[\begin{array}{cc}
\lambda A_{5}+A_{4} & 0 \\
A_{3} & 0 \\
A_{2} & A_{1} \\
0 & A_{0}
\end{array}\right] \cdot\left[\begin{array}{c}
\lambda \\
1
\end{array}\right]=A_{5} \lambda^{5}+\cdots+A_{1} \lambda+A_{0}
$$

- We say that a pencil of the form

$$
\left[\begin{array}{c|c}
M & K_{2}^{T} \\
\hline K_{1} & 0
\end{array}\right]
$$

with these duality and recovery conditions is a Λ-dual pencil for $P(\lambda)$.

^-dual Pencils

Theorem (Dopico, Lawrence, Pérez, Van Dooren; B., S., Z., 2016)

A \wedge-dual pencil

$$
\left[\begin{array}{c|c}
M & K_{2}^{T} \\
\hline K_{1} & 0
\end{array}\right]
$$

for $P(\lambda)$ is a strong linearization of $P(\lambda)$ if

- The linear coefficient matrices of $K_{1}(\lambda)$ and $K_{2}(\lambda)$ have full rank.
- For every $\lambda_{0} \in \overline{\mathbb{F}}$, the matrices $K_{1}\left(\lambda_{0}\right)$ and $K_{2}\left(\lambda_{0}\right)$ have full rank.

A Canonical Form for GFPRs

Theorem (B., S., Z., 2016)

If $G(\lambda)$ is a GFPR for the matrix polynomial $P(\lambda)$, then through block row and column permutations, $G(\lambda)$ can be expressed in the canonical form

$$
G(\lambda) \rightsquigarrow\left[\begin{array}{c|c}
M & K_{2}^{T} \tag{^-DualPencil}\\
\hline K_{1} & 0
\end{array}\right],
$$

where for certain p_{1}, p_{2},

$$
K_{i} \cdot\left[\begin{array}{llll}
\lambda^{p_{i}} & \lambda^{p_{i}-1} & \cdots & 1
\end{array}\right]^{T}=0, \quad i=1,2
$$

and

$$
\left[\begin{array}{llll}
\lambda^{p_{2}} & \lambda^{p_{2}-1} & \cdots & 1
\end{array}\right] \cdot M \cdot\left[\begin{array}{llll}
\lambda^{p_{1}} & \lambda^{p_{1}-1} & \cdots & 1
\end{array}\right]^{T}=P(\lambda) .
$$

A Canonical Form for GFPRs

Example:

$$
\begin{array}{r}
{\left[\begin{array}{ccccc}
A_{4}+\lambda A_{5} & -Z_{3} & -Z_{2} & -I_{n} & 0 \\
A_{3} & \lambda Z_{3}-I_{n} & \lambda Z_{2} & \lambda I_{n} & 0 \\
A_{2} & \lambda I_{n} & A_{1} & 0 & -I_{n} \\
-I_{n} & 0 & \lambda I_{n} & 0 & 0 \\
0 & 0 & A_{0} & 0 & \lambda I_{n}
\end{array}\right]} \\
\underset{\sim}{\text { Permute }}
\end{array}\left[\begin{array}{cc|ccc}
A_{4}+\lambda A_{5} & -Z_{2} & -Z_{3} & -I_{n} & 0 \\
A_{3} & \lambda Z_{2} & \lambda Z_{3}-I_{n} & \lambda I_{n} & 0 \\
A_{2} & A_{1} & \lambda I_{n} & 0 & -I_{n} \\
0 & A_{0} & 0 & 0 & \lambda I_{n} \\
\hline-I_{n} & \lambda I_{n} & 0 & 0 & 0
\end{array}\right], ~\left[\begin{array}{cl}
& 0
\end{array}\right.
$$

Example: Canonical form for $\left(\lambda M_{-5}-M_{2,3,4,0,1}\right) M_{3}(Z)$

Conclusions and Future Work

- Unification of Fiedler-like pencils under a canonical form. (Goodbye GFPRs)
- A unified search for structure-preserving linearizations.
- Analysis of numerical properties of this larger class of pencils
- Linearizations for matrix polynomials in nonmonomial bases

Conclusions and Future Work

- Unification of Fiedler-like pencils under a canonical form. (Goodbye GFPRs)
- A unified search for structure-preserving linearizations.
- Analysis of numerical properties of this larger class of pencils
- Linearizations for matrix polynomials in nonmonomial bases

Conclusions and Future Work

- Unification of Fiedler-like pencils under a canonical form. (Goodbye GFPRs)
- A unified search for structure-preserving linearizations.
- Analysis of numerical properties of this larger class of pencils
- Linearizations for matrix polynomials in nonmonomial bases

Conclusions and Future Work

- Unification of Fiedler-like pencils under a canonical form. (Goodbye GFPRs)
- A unified search for structure-preserving linearizations.
- Analysis of numerical properties of this larger class of pencils
- Linearizations for matrix polynomials in nonmonomial bases

Conclusions and Future Work

- Unification of Fiedler-like pencils under a canonical form. (Goodbye GFPRs)
- A unified search for structure-preserving linearizations.
- Analysis of numerical properties of this larger class of pencils
- Linearizations for matrix polynomials in nonmonomial bases

Monomial Basis: $1, \lambda, \lambda^{2}, \lambda^{3}, \ldots$

Conclusions and Future Work

- Unification of Fiedler-like pencils under a canonical form. (Goodbye GFPRs)
- A unified search for structure-preserving linearizations.
- Analysis of numerical properties of this larger class of pencils
- Linearizations for matrix polynomials in nonmonomial bases

Monomial Basis: $1, \lambda, \lambda^{2}, \lambda^{3}, \ldots$
Chebyshev Basis: $1,2 \lambda, 4 \lambda^{2}-1,8 \lambda^{3}-4 \lambda, \ldots$

Acknowledgments

- This work was done at the UCSB Summer Research Program for Undergraduates 2016. We would like to thank the UCSB Mathematics Department for their support.
- We would like to thank the National Science Foundation, who funded this work with grant DMS-1358884.
- We would like to thank our mentor Maribel Bueno for all her advice, encouragement, and insights.
- We would like to thank the organizers of YMC for this opportunity.

References

E. N. Antoniou and S. Vologiannidis

A new family of companion forms of polynomial matrices
Electron. J. Linear Algebra 11 (2004) 78-87.
R M.I. Bueno, F. M. Dopico, S. Furtado, M. Rychnovsky
Large vector spaces of block-symmetric strong linearizations for matrix polynomials
Linear Algebra and its Applications, 477 (2015), 165-210.
囯 F. De Terán, F. M. Dopico, and D. S. Mackey
Spectral equivalence of matrix polynomials and the index sum theorem Linear Algebra and its Applications, 459 (2014), pp. 264-333.
F. F. M. Dopico, P. W. Lawrence, J. Pérez, P. Van Dooren

Block Kronecker Linearizations of Matrix Polynomials and their Backward Errors
Submitted for publication. http://eprints.ma.man.ac.uk/2481/
國 Miroslav Fiedler
A note on companion matrices
Linear Algebra Appl., 372:325-331, (2003).

